Finite frequency fault detection for a class of nonhomogeneous Markov jump systems with nonlinearities and sensor failures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-24

AUTHORS

Yue Long, Ju H. Park, Dan Ye

ABSTRACT

In this paper, the finite frequency fault detection (FD) problem is addressed for a class of nonhomogeneous Markov jump systems with nonlinearities and sensor failures. Compared with the existing sensor fault models that contain many known faulty modes, the fault model in this paper is more general since it not only covers more types of sensor failures but also does not need to know the fault information in advance. Then, by means of finite frequency stochastic performance indices, a novel FD scheme is proposed. Some new lemmas, in which the nonlinear item and nonhomogeneous Markov switching are dealt appropriately, are developed to capture the stability of the system and desired finite frequency performances. Then, by the derived lemmas, sufficient conditions with potentially less conservativeness are investigated to guarantee the existence of the FD filters. Finally, an application to HiMAT vehicle is given to illustrate the effectiveness of the derived theoretical results. More... »

PAGES

1-15

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-019-04790-4

DOI

http://dx.doi.org/10.1007/s11071-019-04790-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111639168


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "School of Physics, Liaoning University, Shenyang, People\u2019s Republic of China", 
            "Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Long", 
        "givenName": "Yue", 
        "id": "sg:person.01357177031.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357177031.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju H.", 
        "id": "sg:person.07705373347.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "College of Information Science and Engineering, Northeastern University, Shenyang, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Dan", 
        "id": "sg:person.011366353663.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011366353663.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/rnc.1330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000150240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2009.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000712797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2008.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003369046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-014-0576-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005321498", 
          "https://doi.org/10.1007/s12555-014-0576-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1412-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006452208", 
          "https://doi.org/10.1007/s11071-014-1412-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2514/6.2008-6784", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008291869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009141570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009141570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2012.05.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010583945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/acs.998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011007529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207170600999322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013663573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-015-0114-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014816413", 
          "https://doi.org/10.1007/s12555-015-0114-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-015-0114-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014816413", 
          "https://doi.org/10.1007/s12555-015-0114-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2015.12.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018483101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.3532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026259913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030224600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030224600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.08.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031541059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2009.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038256013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2013.12.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040514298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2015.01.106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040536640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053029725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2004.840475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061475822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2016.2593742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061480175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2012.2185330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061567325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2013.2286209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2014.2305841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2017.2671346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084205434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.2017.2723623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091002256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.08.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091105259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-016-0615-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092141621", 
          "https://doi.org/10.1007/s12555-016-0615-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2017.2763625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092561585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-016-0577-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099693386", 
          "https://doi.org/10.1007/s12555-016-0577-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2018.2824853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103567517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.2018.2858247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106346160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109523071", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-96202-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109523071", 
          "https://doi.org/10.1007/978-3-319-96202-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-96202-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109523071", 
          "https://doi.org/10.1007/978-3-319-96202-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2018.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109782221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2018.10.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109912082"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-24", 
    "datePublishedReg": "2019-01-24", 
    "description": "In this paper, the finite frequency fault detection (FD) problem is addressed for a class of nonhomogeneous Markov jump systems with nonlinearities and sensor failures. Compared with the existing sensor fault models that contain many known faulty modes, the fault model in this paper is more general since it not only covers more types of sensor failures but also does not need to know the fault information in advance. Then, by means of finite frequency stochastic performance indices, a novel FD scheme is proposed. Some new lemmas, in which the nonlinear item and nonhomogeneous Markov switching are dealt appropriately, are developed to capture the stability of the system and desired finite frequency performances. Then, by the derived lemmas, sufficient conditions with potentially less conservativeness are investigated to guarantee the existence of the FD filters. Finally, an application to HiMAT vehicle is given to illustrate the effectiveness of the derived theoretical results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-019-04790-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }
    ], 
    "name": "Finite frequency fault detection for a class of nonhomogeneous Markov jump systems with nonlinearities and sensor failures", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "35492981c33ee700c7aad9d463adfd2c033e52848dbfea28f96e4affe71faf8c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-019-04790-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111639168"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-019-04790-4", 
      "https://app.dimensions.ai/details/publication/pub.1111639168"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100783_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11071-019-04790-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-019-04790-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-019-04790-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-019-04790-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-019-04790-4'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      60 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-019-04790-4 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N53a82ac25eb648cfa3930d3b3b35a23f
4 schema:citation sg:pub.10.1007/978-3-319-96202-3
5 sg:pub.10.1007/s11071-014-1412-3
6 sg:pub.10.1007/s12555-014-0576-4
7 sg:pub.10.1007/s12555-015-0114-z
8 sg:pub.10.1007/s12555-016-0577-6
9 sg:pub.10.1007/s12555-016-0615-4
10 https://app.dimensions.ai/details/publication/pub.1109523071
11 https://doi.org/10.1002/acs.998
12 https://doi.org/10.1002/rnc.1330
13 https://doi.org/10.1002/rnc.1380
14 https://doi.org/10.1002/rnc.1446
15 https://doi.org/10.1002/rnc.1546
16 https://doi.org/10.1002/rnc.3532
17 https://doi.org/10.1016/j.amc.2015.01.106
18 https://doi.org/10.1016/j.automatica.2008.08.010
19 https://doi.org/10.1016/j.automatica.2009.04.020
20 https://doi.org/10.1016/j.automatica.2009.07.004
21 https://doi.org/10.1016/j.automatica.2012.05.024
22 https://doi.org/10.1016/j.automatica.2018.10.029
23 https://doi.org/10.1016/j.automatica.2018.10.056
24 https://doi.org/10.1016/j.ins.2013.08.058
25 https://doi.org/10.1016/j.ins.2013.12.050
26 https://doi.org/10.1016/j.ins.2015.12.023
27 https://doi.org/10.1016/j.ins.2017.08.006
28 https://doi.org/10.1080/00207170600999322
29 https://doi.org/10.1109/tac.2004.840475
30 https://doi.org/10.1109/tac.2016.2593742
31 https://doi.org/10.1109/tcsi.2012.2185330
32 https://doi.org/10.1109/tcsi.2017.2763625
33 https://doi.org/10.1109/tcyb.2013.2286209
34 https://doi.org/10.1109/tcyb.2017.2671346
35 https://doi.org/10.1109/tcyb.2018.2824853
36 https://doi.org/10.1109/tnnls.2014.2305841
37 https://doi.org/10.1109/tsmc.2017.2723623
38 https://doi.org/10.1109/tsmc.2018.2858247
39 https://doi.org/10.2514/6.2008-6784
40 schema:datePublished 2019-01-24
41 schema:datePublishedReg 2019-01-24
42 schema:description In this paper, the finite frequency fault detection (FD) problem is addressed for a class of nonhomogeneous Markov jump systems with nonlinearities and sensor failures. Compared with the existing sensor fault models that contain many known faulty modes, the fault model in this paper is more general since it not only covers more types of sensor failures but also does not need to know the fault information in advance. Then, by means of finite frequency stochastic performance indices, a novel FD scheme is proposed. Some new lemmas, in which the nonlinear item and nonhomogeneous Markov switching are dealt appropriately, are developed to capture the stability of the system and desired finite frequency performances. Then, by the derived lemmas, sufficient conditions with potentially less conservativeness are investigated to guarantee the existence of the FD filters. Finally, an application to HiMAT vehicle is given to illustrate the effectiveness of the derived theoretical results.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf sg:journal.1040905
47 schema:name Finite frequency fault detection for a class of nonhomogeneous Markov jump systems with nonlinearities and sensor failures
48 schema:pagination 1-15
49 schema:productId N0273e5a77f3643c1aaa546e65e610de6
50 N7225466510ef400e9e6e353743e31632
51 Nea633eeeee344418b074b97653a35c9b
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111639168
53 https://doi.org/10.1007/s11071-019-04790-4
54 schema:sdDatePublished 2019-04-11T08:55
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Nad1edc7ff1a849daaff410cf7b81f9a1
57 schema:url https://link.springer.com/10.1007%2Fs11071-019-04790-4
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0273e5a77f3643c1aaa546e65e610de6 schema:name dimensions_id
62 schema:value pub.1111639168
63 rdf:type schema:PropertyValue
64 N1e4c46b07e3a4c01b3d7f10558df6904 rdf:first sg:person.07705373347.23
65 rdf:rest N8a57303c64504ba39c21830f2e26343f
66 N53a82ac25eb648cfa3930d3b3b35a23f rdf:first sg:person.01357177031.21
67 rdf:rest N1e4c46b07e3a4c01b3d7f10558df6904
68 N7225466510ef400e9e6e353743e31632 schema:name readcube_id
69 schema:value 35492981c33ee700c7aad9d463adfd2c033e52848dbfea28f96e4affe71faf8c
70 rdf:type schema:PropertyValue
71 N8a57303c64504ba39c21830f2e26343f rdf:first sg:person.011366353663.11
72 rdf:rest rdf:nil
73 Nad1edc7ff1a849daaff410cf7b81f9a1 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nea633eeeee344418b074b97653a35c9b schema:name doi
76 schema:value 10.1007/s11071-019-04790-4
77 rdf:type schema:PropertyValue
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
82 schema:name Electrical and Electronic Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1040905 schema:issn 0924-090X
85 1573-269X
86 schema:name Nonlinear Dynamics
87 rdf:type schema:Periodical
88 sg:person.011366353663.11 schema:affiliation https://www.grid.ac/institutes/grid.412252.2
89 schema:familyName Ye
90 schema:givenName Dan
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011366353663.11
92 rdf:type schema:Person
93 sg:person.01357177031.21 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
94 schema:familyName Long
95 schema:givenName Yue
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357177031.21
97 rdf:type schema:Person
98 sg:person.07705373347.23 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
99 schema:familyName Park
100 schema:givenName Ju H.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23
102 rdf:type schema:Person
103 sg:pub.10.1007/978-3-319-96202-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109523071
104 https://doi.org/10.1007/978-3-319-96202-3
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11071-014-1412-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006452208
107 https://doi.org/10.1007/s11071-014-1412-3
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s12555-014-0576-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005321498
110 https://doi.org/10.1007/s12555-014-0576-4
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s12555-015-0114-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014816413
113 https://doi.org/10.1007/s12555-015-0114-z
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s12555-016-0577-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099693386
116 https://doi.org/10.1007/s12555-016-0577-6
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s12555-016-0615-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092141621
119 https://doi.org/10.1007/s12555-016-0615-4
120 rdf:type schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1109523071 schema:CreativeWork
122 https://doi.org/10.1002/acs.998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011007529
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1002/rnc.1330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000150240
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/rnc.1380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053029725
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/rnc.1446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009141570
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1002/rnc.1546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030224600
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/rnc.3532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026259913
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.amc.2015.01.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040536640
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.automatica.2008.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003369046
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.automatica.2009.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038256013
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.automatica.2009.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000712797
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.automatica.2012.05.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010583945
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.automatica.2018.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109782221
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.automatica.2018.10.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109912082
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.ins.2013.08.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031541059
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ins.2013.12.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040514298
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ins.2015.12.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018483101
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ins.2017.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091105259
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/00207170600999322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013663573
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tac.2004.840475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475822
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tac.2016.2593742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061480175
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tcsi.2012.2185330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061567325
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tcsi.2017.2763625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092561585
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tcyb.2013.2286209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579565
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tcyb.2017.2671346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084205434
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tcyb.2018.2824853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103567517
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tnnls.2014.2305841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718529
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tsmc.2017.2723623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091002256
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tsmc.2018.2858247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106346160
177 rdf:type schema:CreativeWork
178 https://doi.org/10.2514/6.2008-6784 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008291869
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.412252.2 schema:alternateName Northeastern University
181 schema:name College of Information Science and Engineering, Northeastern University, Shenyang, People’s Republic of China
182 rdf:type schema:Organization
183 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
184 schema:name Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea
185 School of Physics, Liaoning University, Shenyang, People’s Republic of China
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...