Winner-weaken-loser-strengthen rule leads to optimally cooperative interdependent networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01-25

AUTHORS

Lei Shi, Chen Shen, Yini Geng, Chen Chu, Haoran Meng, Matjaž Perc, Stefano Boccaletti, Zhen Wang

ABSTRACT

We introduce a winner-weaken-loser-strengthen rule and study its effects on how cooperation evolves on interdependent networks. The new rule lowers the learning ability of a player if its payoff is larger than the average payoff of its neighbors, thus enhancing its chance to hold onto its current strategy. Conversely, when a player gaining less than the average payoff of its neighborhood, its learning ability is increased, thus weakening the player by increasing the chance of strategy change. Furthermore, considering the nature of human pursue fairness, we let a loser, someone who has larger learning ability, can benefit from another network, whereas a winner cannot. Our results show that moderate values of the threshold lead to a high cooperation plateau, while too high or too small values of the threshold inhibit cooperation. At moderate thresholds, the flourishing cooperation is attributed to species diversity and equality, whereas a lacking of species diversity determines the vanishing of cooperation. We thus demonstrate that a simple winner-weaken-loser-strengthen rule significantly expands the scope of cooperation on structured populations. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-019-04772-6

DOI

http://dx.doi.org/10.1007/s11071-019-04772-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111663961


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yunnan University of Finance And Economics", 
          "id": "https://www.grid.ac/institutes/grid.464506.5", 
          "name": [
            "School of Statistics and Mathematics, Yunnan University of Finance and Economics, 650221, Kunming, Yunnan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Lei", 
        "id": "sg:person.0576660444.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576660444.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yunnan University of Finance And Economics", 
          "id": "https://www.grid.ac/institutes/grid.464506.5", 
          "name": [
            "School of Statistics and Mathematics, Yunnan University of Finance and Economics, 650221, Kunming, Yunnan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "Chen", 
        "id": "sg:person.013551076567.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013551076567.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yunnan University of Finance And Economics", 
          "id": "https://www.grid.ac/institutes/grid.464506.5", 
          "name": [
            "School of Statistics and Mathematics, Yunnan University of Finance and Economics, 650221, Kunming, Yunnan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Geng", 
        "givenName": "Yini", 
        "id": "sg:person.07641414405.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07641414405.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yunnan University of Finance And Economics", 
          "id": "https://www.grid.ac/institutes/grid.464506.5", 
          "name": [
            "School of Statistics and Mathematics, Yunnan University of Finance and Economics, 650221, Kunming, Yunnan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "Chen", 
        "id": "sg:person.014112400235.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014112400235.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yunnan University", 
          "id": "https://www.grid.ac/institutes/grid.440773.3", 
          "name": [
            "School of Software, Yunnan University, 650504, Kunming, Yunnan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Haoran", 
        "id": "sg:person.015230313744.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015230313744.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Complexity Science Hub Vienna", 
          "id": "https://www.grid.ac/institutes/grid.484678.1", 
          "name": [
            "Faculty of Natural Sciences and Mathematics, University of Maribor, Koro\u0161ka cesta 160, 2000, Maribor, Slovenia", 
            "Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, 2000, Maribor, Slovenia", 
            "Complexity Science Hub Vienna, Josefst\u00e4dterstra\u00dfe 39, 1080, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perc", 
        "givenName": "Matja\u017e", 
        "id": "sg:person.0651162615.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651162615.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "CNR Institute for Complex Systems, Via Madonna del Piano 10, 50019, Florence, Italy", 
            "Unmanned Systems Research Institute, Northwestern Polytechnical University, 710072, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boccaletti", 
        "givenName": "Stefano", 
        "id": "sg:person.0763521661.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763521661.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northwestern Polytechnical University", 
          "id": "https://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, 710072, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhen", 
        "id": "sg:person.015461334571.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015461334571.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1133755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002913322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/10/4/043036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006064579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006323057", 
          "https://doi.org/10.1038/nature02414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006323057", 
          "https://doi.org/10.1038/nature02414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.056118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010693077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.056118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010693077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.048701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013649274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.048701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013649274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014594125", 
          "https://doi.org/10.1038/nphys2180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/3/033041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017359092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.066103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018227743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.066103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018227743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2016.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025576898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029093610", 
          "https://doi.org/10.1038/srep01183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.017101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029595464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.017101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029595464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2013.11.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029701033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/359826a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030106977", 
          "https://doi.org/10.1038/359826a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030835694", 
          "https://doi.org/10.1038/nature06940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/348027a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032313221", 
          "https://doi.org/10.1038/348027a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.065101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032756031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.065101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032756031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033246835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033246835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.258103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034007587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.258103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034007587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/15/5/053010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034639106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/g1030317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034694513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2012/11/p11017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034996632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.016132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036965370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.73.016132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036965370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2007.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037645265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040191749", 
          "https://doi.org/10.1038/ncomms8142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040887683", 
          "https://doi.org/10.1038/nature12520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041459871", 
          "https://doi.org/10.1038/srep00369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.108103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042941276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.108103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042941276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1604096113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043333840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2014.0735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047829818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050141316", 
          "https://doi.org/10.1038/nature12047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1015648108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052238181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.092080099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052742175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.027101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.027101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.017103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.017103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060736925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.057101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.057101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060741931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.056113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.056113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060744167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.098104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.098104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.098104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1070582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7466396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062646865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2017.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085603416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/aa9fd2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099764826"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-25", 
    "datePublishedReg": "2019-01-25", 
    "description": "We introduce a winner-weaken-loser-strengthen rule and study its effects on how cooperation evolves on interdependent networks. The new rule lowers the learning ability of a player if its payoff is larger than the average payoff of its neighbors, thus enhancing its chance to hold onto its current strategy. Conversely, when a player gaining less than the average payoff of its neighborhood, its learning ability is increased, thus weakening the player by increasing the chance of strategy change. Furthermore, considering the nature of human pursue fairness, we let a loser, someone who has larger learning ability, can benefit from another network, whereas a winner cannot. Our results show that moderate values of the threshold lead to a high cooperation plateau, while too high or too small values of the threshold inhibit cooperation. At moderate thresholds, the flourishing cooperation is attributed to species diversity and equality, whereas a lacking of species diversity determines the vanishing of cooperation. We thus demonstrate that a simple winner-weaken-loser-strengthen rule significantly expands the scope of cooperation on structured populations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-019-04772-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }
    ], 
    "name": "Winner-weaken-loser-strengthen rule leads to optimally cooperative interdependent networks", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e8404f6c05a1715a906659e59c7cda1b9650fa7d41c531318fc1a2bc929ce075"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-019-04772-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111663961"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-019-04772-6", 
      "https://app.dimensions.ai/details/publication/pub.1111663961"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100812_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11071-019-04772-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-019-04772-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-019-04772-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-019-04772-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-019-04772-6'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      65 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-019-04772-6 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N2b7892e7580c4f3793d45f5df61c3b24
4 schema:citation sg:pub.10.1038/348027a0
5 sg:pub.10.1038/359826a0
6 sg:pub.10.1038/nature02414
7 sg:pub.10.1038/nature06940
8 sg:pub.10.1038/nature12047
9 sg:pub.10.1038/nature12520
10 sg:pub.10.1038/ncomms8142
11 sg:pub.10.1038/nphys2180
12 sg:pub.10.1038/srep00369
13 sg:pub.10.1038/srep01183
14 https://doi.org/10.1016/j.cnsns.2016.05.009
15 https://doi.org/10.1016/j.jtbi.2013.11.018
16 https://doi.org/10.1016/j.physrep.2007.04.004
17 https://doi.org/10.1016/j.physrep.2017.05.004
18 https://doi.org/10.1073/pnas.092080099
19 https://doi.org/10.1073/pnas.1015648108
20 https://doi.org/10.1073/pnas.1604096113
21 https://doi.org/10.1088/1367-2630/10/4/043036
22 https://doi.org/10.1088/1367-2630/15/5/053010
23 https://doi.org/10.1088/1367-2630/16/3/033041
24 https://doi.org/10.1088/1367-2630/aa9fd2
25 https://doi.org/10.1088/1742-5468/2012/11/p11017
26 https://doi.org/10.1098/rsif.2014.0735
27 https://doi.org/10.1103/physreve.58.69
28 https://doi.org/10.1103/physreve.66.056118
29 https://doi.org/10.1103/physreve.73.016132
30 https://doi.org/10.1103/physreve.76.027101
31 https://doi.org/10.1103/physreve.77.017103
32 https://doi.org/10.1103/physreve.78.017101
33 https://doi.org/10.1103/physreve.83.057101
34 https://doi.org/10.1103/physreve.83.065101
35 https://doi.org/10.1103/physreve.86.056113
36 https://doi.org/10.1103/physreve.86.066103
37 https://doi.org/10.1103/physrevlett.105.048701
38 https://doi.org/10.1103/physrevlett.95.098104
39 https://doi.org/10.1103/physrevlett.97.258103
40 https://doi.org/10.1103/physrevlett.98.108103
41 https://doi.org/10.1126/science.1070582
42 https://doi.org/10.1126/science.1133755
43 https://doi.org/10.1126/science.7466396
44 https://doi.org/10.3390/g1030317
45 schema:datePublished 2019-01-25
46 schema:datePublishedReg 2019-01-25
47 schema:description We introduce a winner-weaken-loser-strengthen rule and study its effects on how cooperation evolves on interdependent networks. The new rule lowers the learning ability of a player if its payoff is larger than the average payoff of its neighbors, thus enhancing its chance to hold onto its current strategy. Conversely, when a player gaining less than the average payoff of its neighborhood, its learning ability is increased, thus weakening the player by increasing the chance of strategy change. Furthermore, considering the nature of human pursue fairness, we let a loser, someone who has larger learning ability, can benefit from another network, whereas a winner cannot. Our results show that moderate values of the threshold lead to a high cooperation plateau, while too high or too small values of the threshold inhibit cooperation. At moderate thresholds, the flourishing cooperation is attributed to species diversity and equality, whereas a lacking of species diversity determines the vanishing of cooperation. We thus demonstrate that a simple winner-weaken-loser-strengthen rule significantly expands the scope of cooperation on structured populations.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf sg:journal.1040905
52 schema:name Winner-weaken-loser-strengthen rule leads to optimally cooperative interdependent networks
53 schema:pagination 1-8
54 schema:productId N6ed0cea5e94844f59779db0abb80995a
55 N7a08545d257b431daf0d7d1570b8522e
56 Nf40c0eb7e86f4675a95df00af516b76f
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111663961
58 https://doi.org/10.1007/s11071-019-04772-6
59 schema:sdDatePublished 2019-04-11T08:57
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N48ffca50efb04fbbaf54585d0d89d22b
62 schema:url https://link.springer.com/10.1007%2Fs11071-019-04772-6
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N01086522a8014042a0aaa426a108dc96 rdf:first sg:person.0651162615.00
67 rdf:rest N69a6ed7bf7b949cab75d64d0858cf763
68 N0cc1a0e81c0b4220b1214cae696f9809 rdf:first sg:person.015461334571.27
69 rdf:rest rdf:nil
70 N25ed91de1a574c6c95c6680dd1e4b8c6 rdf:first sg:person.015230313744.78
71 rdf:rest N01086522a8014042a0aaa426a108dc96
72 N2b7892e7580c4f3793d45f5df61c3b24 rdf:first sg:person.0576660444.47
73 rdf:rest Ne0bcdea632e54913a22f213dbe0cfd00
74 N48ffca50efb04fbbaf54585d0d89d22b schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N69a6ed7bf7b949cab75d64d0858cf763 rdf:first sg:person.0763521661.41
77 rdf:rest N0cc1a0e81c0b4220b1214cae696f9809
78 N6ed0cea5e94844f59779db0abb80995a schema:name dimensions_id
79 schema:value pub.1111663961
80 rdf:type schema:PropertyValue
81 N7a08545d257b431daf0d7d1570b8522e schema:name doi
82 schema:value 10.1007/s11071-019-04772-6
83 rdf:type schema:PropertyValue
84 Naf50b33e9c914a8c8fc3a84cf405b31e rdf:first sg:person.07641414405.95
85 rdf:rest Ndf61c58e598d4fc190ee2b1187870773
86 Ndf61c58e598d4fc190ee2b1187870773 rdf:first sg:person.014112400235.83
87 rdf:rest N25ed91de1a574c6c95c6680dd1e4b8c6
88 Ne0bcdea632e54913a22f213dbe0cfd00 rdf:first sg:person.013551076567.02
89 rdf:rest Naf50b33e9c914a8c8fc3a84cf405b31e
90 Nf40c0eb7e86f4675a95df00af516b76f schema:name readcube_id
91 schema:value e8404f6c05a1715a906659e59c7cda1b9650fa7d41c531318fc1a2bc929ce075
92 rdf:type schema:PropertyValue
93 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
94 schema:name Psychology and Cognitive Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
97 schema:name Psychology
98 rdf:type schema:DefinedTerm
99 sg:journal.1040905 schema:issn 0924-090X
100 1573-269X
101 schema:name Nonlinear Dynamics
102 rdf:type schema:Periodical
103 sg:person.013551076567.02 schema:affiliation https://www.grid.ac/institutes/grid.464506.5
104 schema:familyName Shen
105 schema:givenName Chen
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013551076567.02
107 rdf:type schema:Person
108 sg:person.014112400235.83 schema:affiliation https://www.grid.ac/institutes/grid.464506.5
109 schema:familyName Chu
110 schema:givenName Chen
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014112400235.83
112 rdf:type schema:Person
113 sg:person.015230313744.78 schema:affiliation https://www.grid.ac/institutes/grid.440773.3
114 schema:familyName Meng
115 schema:givenName Haoran
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015230313744.78
117 rdf:type schema:Person
118 sg:person.015461334571.27 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
119 schema:familyName Wang
120 schema:givenName Zhen
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015461334571.27
122 rdf:type schema:Person
123 sg:person.0576660444.47 schema:affiliation https://www.grid.ac/institutes/grid.464506.5
124 schema:familyName Shi
125 schema:givenName Lei
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576660444.47
127 rdf:type schema:Person
128 sg:person.0651162615.00 schema:affiliation https://www.grid.ac/institutes/grid.484678.1
129 schema:familyName Perc
130 schema:givenName Matjaž
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651162615.00
132 rdf:type schema:Person
133 sg:person.0763521661.41 schema:affiliation https://www.grid.ac/institutes/grid.440588.5
134 schema:familyName Boccaletti
135 schema:givenName Stefano
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763521661.41
137 rdf:type schema:Person
138 sg:person.07641414405.95 schema:affiliation https://www.grid.ac/institutes/grid.464506.5
139 schema:familyName Geng
140 schema:givenName Yini
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07641414405.95
142 rdf:type schema:Person
143 sg:pub.10.1038/348027a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032313221
144 https://doi.org/10.1038/348027a0
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/359826a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030106977
147 https://doi.org/10.1038/359826a0
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nature02414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006323057
150 https://doi.org/10.1038/nature02414
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nature06940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030835694
153 https://doi.org/10.1038/nature06940
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nature12047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050141316
156 https://doi.org/10.1038/nature12047
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature12520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040887683
159 https://doi.org/10.1038/nature12520
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ncomms8142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040191749
162 https://doi.org/10.1038/ncomms8142
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nphys2180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014594125
165 https://doi.org/10.1038/nphys2180
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/srep00369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041459871
168 https://doi.org/10.1038/srep00369
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/srep01183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029093610
171 https://doi.org/10.1038/srep01183
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.cnsns.2016.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025576898
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.jtbi.2013.11.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029701033
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.physrep.2007.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037645265
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.physrep.2017.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085603416
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1073/pnas.092080099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052742175
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1073/pnas.1015648108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052238181
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1073/pnas.1604096113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043333840
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1088/1367-2630/10/4/043036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006064579
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1088/1367-2630/15/5/053010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034639106
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/1367-2630/16/3/033041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017359092
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1088/1367-2630/aa9fd2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099764826
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1088/1742-5468/2012/11/p11017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034996632
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1098/rsif.2014.0735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047829818
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physreve.58.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033246835
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physreve.66.056118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010693077
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physreve.73.016132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036965370
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physreve.76.027101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736362
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physreve.77.017103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060736925
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physreve.78.017101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029595464
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physreve.83.057101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060741931
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physreve.83.065101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032756031
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physreve.86.056113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060744167
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physreve.86.066103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018227743
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.105.048701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013649274
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.95.098104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830818
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.97.258103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034007587
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.98.108103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042941276
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1126/science.1070582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446424
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1126/science.1133755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002913322
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.7466396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062646865
232 rdf:type schema:CreativeWork
233 https://doi.org/10.3390/g1030317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034694513
234 rdf:type schema:CreativeWork
235 https://www.grid.ac/institutes/grid.440588.5 schema:alternateName Northwestern Polytechnical University
236 schema:name CNR Institute for Complex Systems, Via Madonna del Piano 10, 50019, Florence, Italy
237 School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, 710072, Xi’an, China
238 Unmanned Systems Research Institute, Northwestern Polytechnical University, 710072, Xi’an, China
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.440773.3 schema:alternateName Yunnan University
241 schema:name School of Software, Yunnan University, 650504, Kunming, Yunnan, China
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.464506.5 schema:alternateName Yunnan University of Finance And Economics
244 schema:name School of Statistics and Mathematics, Yunnan University of Finance and Economics, 650221, Kunming, Yunnan, China
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.484678.1 schema:alternateName Complexity Science Hub Vienna
247 schema:name Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3, 2000, Maribor, Slovenia
248 Complexity Science Hub Vienna, Josefstädterstraße 39, 1080, Vienna, Austria
249 Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...