On choosing state variables for piecewise-smooth dynamical system simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Jin-Song Pei, Joseph P. Wright, François Gay-Balmaz, James L. Beck, Michael D. Todd

ABSTRACT

Choosing state variables in a state-space representation of a nonlinear dynamical system is a nonunique procedure for a given input–output relationship and therefore a potentially challenging task. It can be even more challenging when there are piecewise-defined restoring forces, as in bilinear hysteresis or Bouc–Wen models, which are just two of many such engineering mechanics models. Using various piecewise-smooth models, we make use of flow- and effort-controlled system concepts, common to bond graph theory, to initiate our state variable selection task, and we view numerical simulation as being within the framework of hybrid dynamical systems. In order to develop accurate and efficient time integration, we incorporate MATLAB’s state event location algorithm, which is a mathematically sound numerical solver that deserves to be better known in the engineering mechanics community. We show that different choices of state variables can affect state event implementation, which in turn can significantly affect accuracy and efficiency, as judged by tolerance proportionality and work–accuracy diagrams. Programming details of state event location are included to facilitate application to other models involving piecewise-defined restoring forces. In particular, one version of the Bouc–Wen–Baber–Noori (BWBN) class of models is implemented as a demonstration. More... »

PAGES

1165-1188

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-018-4622-2

DOI

http://dx.doi.org/10.1007/s11071-018-4622-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109904859


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oklahoma", 
          "id": "https://www.grid.ac/institutes/grid.266900.b", 
          "name": [
            "School of Civil Engineering and Environmental Science, University of Oklahoma, 73019-1024, Norman, Oklahoma, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pei", 
        "givenName": "Jin-Song", 
        "id": "sg:person.010473150035.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010473150035.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weidlinger Associates", 
          "id": "https://www.grid.ac/institutes/grid.422575.3", 
          "name": [
            "Division of Applied Science, Weidlinger Associates Inc., 10005, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wright", 
        "givenName": "Joseph P.", 
        "id": "sg:person.015310613355.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310613355.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.5607.4", 
          "name": [
            "CNRS LMD IPSL, Ecole Normale Sup\u00e9rieure de Paris, 24 Rue Lhomond, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gay-Balmaz", 
        "givenName": "Fran\u00e7ois", 
        "id": "sg:person.015574010157.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574010157.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Department of Computing and Mathematical Sciences, California Institute of Technology, Mail Code 9-94, 91125, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beck", 
        "givenName": "James L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, San Diego", 
          "id": "https://www.grid.ac/institutes/grid.266100.3", 
          "name": [
            "Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085, 92093, La Jolla, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Todd", 
        "givenName": "Michael D.", 
        "id": "sg:person.01124335240.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124335240.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-663-05657-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009910069", 
          "https://doi.org/10.1007/978-3-663-05657-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1189756.1189757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015487859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0771-050x(80)90013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024446346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0771-050x(80)90013-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024446346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1882-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027109487", 
          "https://doi.org/10.1007/s11071-014-1882-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01556435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027424377", 
          "https://doi.org/10.1007/bf01556435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01556435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027424377", 
          "https://doi.org/10.1007/bf01556435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/232807.232809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028134373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2009.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029725341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035076039", 
          "https://doi.org/10.1007/bf00276493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035076039", 
          "https://doi.org/10.1007/bf00276493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/103147.103149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043229812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engstruct.2013.12.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046052484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2005.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046069016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3182/20050703-6-cz-1902.00147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047148741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052714473", 
          "https://doi.org/10.1038/nature06932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(1985)111:8(1010)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057581103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(1995)121:5(606)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057582835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9399(2000)126:6(633)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057583757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9445(1995)121:6(1013)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057598620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)em.1943-7889.0000404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057629953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcs.2008.931718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061397621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mcs.2008.931718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061397621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2005.847035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061475901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3153594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062104035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3269364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062117742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3424285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062120330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3644075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062136046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3644077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062136048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-017-3388-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083805881", 
          "https://doi.org/10.1007/s11071-017-3388-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-017-3388-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083805881", 
          "https://doi.org/10.1007/s11071-017-3388-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118152812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109701135"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "Choosing state variables in a state-space representation of a nonlinear dynamical system is a nonunique procedure for a given input\u2013output relationship and therefore a potentially challenging task. It can be even more challenging when there are piecewise-defined restoring forces, as in bilinear hysteresis or Bouc\u2013Wen models, which are just two of many such engineering mechanics models. Using various piecewise-smooth models, we make use of flow- and effort-controlled system concepts, common to bond graph theory, to initiate our state variable selection task, and we view numerical simulation as being within the framework of hybrid dynamical systems. In order to develop accurate and efficient time integration, we incorporate MATLAB\u2019s state event location algorithm, which is a mathematically sound numerical solver that deserves to be better known in the engineering mechanics community. We show that different choices of state variables can affect state event implementation, which in turn can significantly affect accuracy and efficiency, as judged by tolerance proportionality and work\u2013accuracy diagrams. Programming details of state event location are included to facilitate application to other models involving piecewise-defined restoring forces. In particular, one version of the Bouc\u2013Wen\u2013Baber\u2013Noori (BWBN) class of models is implemented as a demonstration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-018-4622-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "95"
      }
    ], 
    "name": "On choosing state variables for piecewise-smooth dynamical system simulations", 
    "pagination": "1165-1188", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-018-4622-2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ca420615bd4aeb97cb62cd7a5378ac339fbb4b14382acc4dfd756f164bbd88bc"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109904859"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-018-4622-2", 
      "https://app.dimensions.ai/details/publication/pub.1109904859"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000376_0000000376/records_56190_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11071-018-4622-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-018-4622-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-018-4622-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-018-4622-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-018-4622-2'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-018-4622-2 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N8c93bc7b8dca4e03bdccc3dd861d864a
4 schema:citation sg:pub.10.1007/978-3-663-05657-7_5
5 sg:pub.10.1007/bf00276493
6 sg:pub.10.1007/bf01556435
7 sg:pub.10.1007/s11071-014-1882-3
8 sg:pub.10.1007/s11071-017-3388-2
9 sg:pub.10.1038/nature06932
10 https://doi.org/10.1002/9781118152812
11 https://doi.org/10.1016/0771-050x(80)90013-3
12 https://doi.org/10.1016/j.engstruct.2013.12.025
13 https://doi.org/10.1016/j.physd.2009.06.016
14 https://doi.org/10.1016/j.ymssp.2005.04.008
15 https://doi.org/10.1061/(asce)0733-9399(1985)111:8(1010)
16 https://doi.org/10.1061/(asce)0733-9399(1995)121:5(606)
17 https://doi.org/10.1061/(asce)0733-9399(2000)126:6(633)
18 https://doi.org/10.1061/(asce)0733-9445(1995)121:6(1013)
19 https://doi.org/10.1061/(asce)em.1943-7889.0000404
20 https://doi.org/10.1109/mcs.2008.931718
21 https://doi.org/10.1109/tac.2005.847035
22 https://doi.org/10.1115/1.3153594
23 https://doi.org/10.1115/1.3269364
24 https://doi.org/10.1115/1.3424285
25 https://doi.org/10.1115/1.3644075
26 https://doi.org/10.1115/1.3644077
27 https://doi.org/10.1145/103147.103149
28 https://doi.org/10.1145/1189756.1189757
29 https://doi.org/10.1145/232807.232809
30 https://doi.org/10.3182/20050703-6-cz-1902.00147
31 schema:datePublished 2019-01
32 schema:datePublishedReg 2019-01-01
33 schema:description Choosing state variables in a state-space representation of a nonlinear dynamical system is a nonunique procedure for a given input–output relationship and therefore a potentially challenging task. It can be even more challenging when there are piecewise-defined restoring forces, as in bilinear hysteresis or Bouc–Wen models, which are just two of many such engineering mechanics models. Using various piecewise-smooth models, we make use of flow- and effort-controlled system concepts, common to bond graph theory, to initiate our state variable selection task, and we view numerical simulation as being within the framework of hybrid dynamical systems. In order to develop accurate and efficient time integration, we incorporate MATLAB’s state event location algorithm, which is a mathematically sound numerical solver that deserves to be better known in the engineering mechanics community. We show that different choices of state variables can affect state event implementation, which in turn can significantly affect accuracy and efficiency, as judged by tolerance proportionality and work–accuracy diagrams. Programming details of state event location are included to facilitate application to other models involving piecewise-defined restoring forces. In particular, one version of the Bouc–Wen–Baber–Noori (BWBN) class of models is implemented as a demonstration.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N08d6513c6ad24e948de344b12e6729de
38 Nde3099087864447a861503195f473cad
39 sg:journal.1040905
40 schema:name On choosing state variables for piecewise-smooth dynamical system simulations
41 schema:pagination 1165-1188
42 schema:productId N01c7ccaea6e14dcb81ae0576f3f6d9a4
43 N0ebc9015b1474a29a6f5520e973f5902
44 Ne292a5584e434278ba9656adee03709d
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109904859
46 https://doi.org/10.1007/s11071-018-4622-2
47 schema:sdDatePublished 2019-04-15T09:24
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Ncc4e30bda6884731a2a3476444626719
50 schema:url https://link.springer.com/10.1007%2Fs11071-018-4622-2
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N01c7ccaea6e14dcb81ae0576f3f6d9a4 schema:name readcube_id
55 schema:value ca420615bd4aeb97cb62cd7a5378ac339fbb4b14382acc4dfd756f164bbd88bc
56 rdf:type schema:PropertyValue
57 N08d6513c6ad24e948de344b12e6729de schema:volumeNumber 95
58 rdf:type schema:PublicationVolume
59 N0ebc9015b1474a29a6f5520e973f5902 schema:name dimensions_id
60 schema:value pub.1109904859
61 rdf:type schema:PropertyValue
62 N668b7873c9a9435e90e0f3052fe1819e rdf:first sg:person.01124335240.89
63 rdf:rest rdf:nil
64 N8c93bc7b8dca4e03bdccc3dd861d864a rdf:first sg:person.010473150035.96
65 rdf:rest Ne98ddc7f3b0c47c4b013316ac3de3f0f
66 Ncc4e30bda6884731a2a3476444626719 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nd98e20a98b004d13a0a6c61d281f57a3 rdf:first Ne6d2cbb8ddbc45849dc8f27d0b01954e
69 rdf:rest N668b7873c9a9435e90e0f3052fe1819e
70 Nde3099087864447a861503195f473cad schema:issueNumber 2
71 rdf:type schema:PublicationIssue
72 Ne292a5584e434278ba9656adee03709d schema:name doi
73 schema:value 10.1007/s11071-018-4622-2
74 rdf:type schema:PropertyValue
75 Ne6d2cbb8ddbc45849dc8f27d0b01954e schema:affiliation https://www.grid.ac/institutes/grid.20861.3d
76 schema:familyName Beck
77 schema:givenName James L.
78 rdf:type schema:Person
79 Ne98ddc7f3b0c47c4b013316ac3de3f0f rdf:first sg:person.015310613355.60
80 rdf:rest Nff2d5bbc1519442ba2b506da600cad97
81 Nff2d5bbc1519442ba2b506da600cad97 rdf:first sg:person.015574010157.52
82 rdf:rest Nd98e20a98b004d13a0a6c61d281f57a3
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
87 schema:name Applied Mathematics
88 rdf:type schema:DefinedTerm
89 sg:journal.1040905 schema:issn 0924-090X
90 1573-269X
91 schema:name Nonlinear Dynamics
92 rdf:type schema:Periodical
93 sg:person.010473150035.96 schema:affiliation https://www.grid.ac/institutes/grid.266900.b
94 schema:familyName Pei
95 schema:givenName Jin-Song
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010473150035.96
97 rdf:type schema:Person
98 sg:person.01124335240.89 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
99 schema:familyName Todd
100 schema:givenName Michael D.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124335240.89
102 rdf:type schema:Person
103 sg:person.015310613355.60 schema:affiliation https://www.grid.ac/institutes/grid.422575.3
104 schema:familyName Wright
105 schema:givenName Joseph P.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015310613355.60
107 rdf:type schema:Person
108 sg:person.015574010157.52 schema:affiliation https://www.grid.ac/institutes/grid.5607.4
109 schema:familyName Gay-Balmaz
110 schema:givenName François
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574010157.52
112 rdf:type schema:Person
113 sg:pub.10.1007/978-3-663-05657-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009910069
114 https://doi.org/10.1007/978-3-663-05657-7_5
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf00276493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035076039
117 https://doi.org/10.1007/bf00276493
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf01556435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027424377
120 https://doi.org/10.1007/bf01556435
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s11071-014-1882-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027109487
123 https://doi.org/10.1007/s11071-014-1882-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11071-017-3388-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083805881
126 https://doi.org/10.1007/s11071-017-3388-2
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nature06932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052714473
129 https://doi.org/10.1038/nature06932
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/9781118152812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109701135
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0771-050x(80)90013-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024446346
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.engstruct.2013.12.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046052484
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.physd.2009.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029725341
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.ymssp.2005.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046069016
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1061/(asce)0733-9399(1985)111:8(1010) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057581103
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1061/(asce)0733-9399(1995)121:5(606) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057582835
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1061/(asce)0733-9399(2000)126:6(633) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057583757
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1061/(asce)0733-9445(1995)121:6(1013) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057598620
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1061/(asce)em.1943-7889.0000404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057629953
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/mcs.2008.931718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061397621
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/tac.2005.847035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475901
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1115/1.3153594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062104035
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1115/1.3269364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062117742
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1115/1.3424285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062120330
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1115/1.3644075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062136046
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1115/1.3644077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062136048
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1145/103147.103149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043229812
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1145/1189756.1189757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015487859
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1145/232807.232809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028134373
170 rdf:type schema:CreativeWork
171 https://doi.org/10.3182/20050703-6-cz-1902.00147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047148741
172 rdf:type schema:CreativeWork
173 https://www.grid.ac/institutes/grid.20861.3d schema:alternateName California Institute of Technology
174 schema:name Department of Computing and Mathematical Sciences, California Institute of Technology, Mail Code 9-94, 91125, Pasadena, CA, USA
175 rdf:type schema:Organization
176 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
177 schema:name Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0085, 92093, La Jolla, CA, USA
178 rdf:type schema:Organization
179 https://www.grid.ac/institutes/grid.266900.b schema:alternateName University of Oklahoma
180 schema:name School of Civil Engineering and Environmental Science, University of Oklahoma, 73019-1024, Norman, Oklahoma, USA
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.422575.3 schema:alternateName Weidlinger Associates
183 schema:name Division of Applied Science, Weidlinger Associates Inc., 10005, New York, NY, USA
184 rdf:type schema:Organization
185 https://www.grid.ac/institutes/grid.5607.4 schema:alternateName École Normale Supérieure
186 schema:name CNRS LMD IPSL, Ecole Normale Supérieure de Paris, 24 Rue Lhomond, 75005, Paris, France
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...