Improved synchronization criteria of Lur’e systems under sampled-data control View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

Chao Ge, Bingfang Wang, Ju H. Park, Changchun Hua

ABSTRACT

In this paper, we address the issue of H∞ synchronization for two identical chaotic systems with time-varying delays and uncertainties under sampled-data control. By developing some new terms, an improved piecewise Lyapunov–Krasovskii functional (LKF) is constructed to take full advantage of characteristic about real sampling and nonlinear function vector. Furthermore, some relaxed matrices constructed in LKF are not necessarily positive definite. By using the LKF and free-matrix-based integral inequality, some sufficient criteria can be obtained to ensure the stability of error systems and reduce the influence of external disturbances with an H∞ norm bound. The sampled-data controller can be synthesized by solving a group of linear matrix inequalities with the maximal sampling interval. Finally, the numerical examples are considered and analyzed by the proposed approach so as to show the benefit and the superiority of the proposed approach. More... »

PAGES

1-13

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-018-4527-0

DOI

http://dx.doi.org/10.1007/s11071-018-4527-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106705850


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hebei United University", 
          "id": "https://www.grid.ac/institutes/grid.440734.0", 
          "name": [
            "North China University of Science and Technology, 063009, Tangshan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "Chao", 
        "id": "sg:person.07365514253.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365514253.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei United University", 
          "id": "https://www.grid.ac/institutes/grid.440734.0", 
          "name": [
            "North China University of Science and Technology, 063009, Tangshan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Bingfang", 
        "id": "sg:person.013477654621.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477654621.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju H.", 
        "id": "sg:person.07705373347.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yanshan University", 
          "id": "https://www.grid.ac/institutes/grid.413012.5", 
          "name": [
            "Yanshan University, 066004, Qinhuangdao, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hua", 
        "givenName": "Changchun", 
        "id": "sg:person.07762675577.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07762675577.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00034-014-9909-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000337335", 
          "https://doi.org/10.1007/s00034-014-9909-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00034-013-9627-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000754400", 
          "https://doi.org/10.1007/s00034-013-9627-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2013.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002735668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-015-2401-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003815845", 
          "https://doi.org/10.1007/s11071-015-2401-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-013-0880-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011363247", 
          "https://doi.org/10.1007/s11071-013-0880-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-015-2199-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013194601", 
          "https://doi.org/10.1007/s11071-015-2199-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00034-013-9665-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015087058", 
          "https://doi.org/10.1007/s00034-013-9665-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-013-0946-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018503355", 
          "https://doi.org/10.1007/s11071-013-0946-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2016.01.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021648053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2009.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022372827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.12.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028979235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2004.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029600219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2016.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030890793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isatra.2015.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035870213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-012-0697-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036626050", 
          "https://doi.org/10.1007/s11071-012-0697-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00034-015-0105-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036811838", 
          "https://doi.org/10.1007/s00034-015-0105-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9800-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043371531", 
          "https://doi.org/10.1007/s11071-010-9800-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9800-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043371531", 
          "https://doi.org/10.1007/s11071-010-9800-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nahs.2016.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043505855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2007.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046586304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2011.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049728870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2014.07.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053673139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1674-1056/23/1/010504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059153331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2014.2312004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2012.2205941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2012.2236356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2013.2271046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2014.2334702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2392946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2012.2230441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2017.2670786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083936420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2017.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085182984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2017.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085380848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2017.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099710776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2018.2831782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103933599"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "In this paper, we address the issue of H\u221e synchronization for two identical chaotic systems with time-varying delays and uncertainties under sampled-data control. By developing some new terms, an improved piecewise Lyapunov\u2013Krasovskii functional (LKF) is constructed to take full advantage of characteristic about real sampling and nonlinear function vector. Furthermore, some relaxed matrices constructed in LKF are not necessarily positive definite. By using the LKF and free-matrix-based integral inequality, some sufficient criteria can be obtained to ensure the stability of error systems and reduce the influence of external disturbances with an H\u221e norm bound. The sampled-data controller can be synthesized by solving a group of linear matrix inequalities with the maximal sampling interval. Finally, the numerical examples are considered and analyzed by the proposed approach so as to show the benefit and the superiority of the proposed approach.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-018-4527-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }
    ], 
    "name": "Improved synchronization criteria of Lur\u2019e systems under sampled-data control", 
    "pagination": "1-13", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "83e568b34d53f1bc2a00be86f34b91bfcbc82f07e0728c8e770b6e373b9abd7d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-018-4527-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106705850"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-018-4527-0", 
      "https://app.dimensions.ai/details/publication/pub.1106705850"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11071-018-4527-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-018-4527-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-018-4527-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-018-4527-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-018-4527-0'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      59 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-018-4527-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6ec866b4f52a411ebb61d8bd6b3cfb50
4 schema:citation sg:pub.10.1007/s00034-013-9627-y
5 sg:pub.10.1007/s00034-013-9665-5
6 sg:pub.10.1007/s00034-014-9909-z
7 sg:pub.10.1007/s00034-015-0105-6
8 sg:pub.10.1007/s11071-010-9800-9
9 sg:pub.10.1007/s11071-012-0697-3
10 sg:pub.10.1007/s11071-013-0880-1
11 sg:pub.10.1007/s11071-013-0946-0
12 sg:pub.10.1007/s11071-015-2199-6
13 sg:pub.10.1007/s11071-015-2401-x
14 https://doi.org/10.1016/j.amc.2014.07.045
15 https://doi.org/10.1016/j.amc.2016.01.062
16 https://doi.org/10.1016/j.amc.2017.04.028
17 https://doi.org/10.1016/j.automatica.2004.03.003
18 https://doi.org/10.1016/j.cnsns.2013.03.008
19 https://doi.org/10.1016/j.fss.2017.12.010
20 https://doi.org/10.1016/j.isatra.2015.10.019
21 https://doi.org/10.1016/j.jfranklin.2009.08.002
22 https://doi.org/10.1016/j.jfranklin.2011.04.015
23 https://doi.org/10.1016/j.jfranklin.2016.12.006
24 https://doi.org/10.1016/j.jfranklin.2017.05.008
25 https://doi.org/10.1016/j.nahs.2016.11.006
26 https://doi.org/10.1016/j.neucom.2007.08.012
27 https://doi.org/10.1016/j.physa.2006.12.033
28 https://doi.org/10.1088/1674-1056/23/1/010504
29 https://doi.org/10.1109/tac.2017.2670786
30 https://doi.org/10.1109/tcyb.2014.2312004
31 https://doi.org/10.1109/tcyb.2018.2831782
32 https://doi.org/10.1109/tnnls.2012.2205941
33 https://doi.org/10.1109/tnnls.2012.2236356
34 https://doi.org/10.1109/tnnls.2013.2271046
35 https://doi.org/10.1109/tnnls.2014.2334702
36 https://doi.org/10.1109/tnnls.2015.2392946
37 https://doi.org/10.1109/tsmcb.2012.2230441
38 schema:datePublished 2018-12
39 schema:datePublishedReg 2018-12-01
40 schema:description In this paper, we address the issue of H∞ synchronization for two identical chaotic systems with time-varying delays and uncertainties under sampled-data control. By developing some new terms, an improved piecewise Lyapunov–Krasovskii functional (LKF) is constructed to take full advantage of characteristic about real sampling and nonlinear function vector. Furthermore, some relaxed matrices constructed in LKF are not necessarily positive definite. By using the LKF and free-matrix-based integral inequality, some sufficient criteria can be obtained to ensure the stability of error systems and reduce the influence of external disturbances with an H∞ norm bound. The sampled-data controller can be synthesized by solving a group of linear matrix inequalities with the maximal sampling interval. Finally, the numerical examples are considered and analyzed by the proposed approach so as to show the benefit and the superiority of the proposed approach.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf sg:journal.1040905
45 schema:name Improved synchronization criteria of Lur’e systems under sampled-data control
46 schema:pagination 1-13
47 schema:productId N236c3dc5ea694541a7390212fe0f8bd2
48 N4c45cf1782b5455d818dff31794bba4e
49 Ndc2ebd7118004c69bcc9f6d54bd0ca90
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106705850
51 https://doi.org/10.1007/s11071-018-4527-0
52 schema:sdDatePublished 2019-04-10T20:46
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N1f4dcaddfee24d269fdab199298cb1f1
55 schema:url http://link.springer.com/10.1007/s11071-018-4527-0
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N1f4dcaddfee24d269fdab199298cb1f1 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N236c3dc5ea694541a7390212fe0f8bd2 schema:name dimensions_id
62 schema:value pub.1106705850
63 rdf:type schema:PropertyValue
64 N4c45cf1782b5455d818dff31794bba4e schema:name readcube_id
65 schema:value 83e568b34d53f1bc2a00be86f34b91bfcbc82f07e0728c8e770b6e373b9abd7d
66 rdf:type schema:PropertyValue
67 N6ec866b4f52a411ebb61d8bd6b3cfb50 rdf:first sg:person.07365514253.53
68 rdf:rest Nd33a336607724db895fe84a9c40d7be5
69 Na6bc6982cbee4a868afe689bcbfdeca3 rdf:first sg:person.07762675577.28
70 rdf:rest rdf:nil
71 Nb5815e1ac08f4766b4a4febf7a7905e7 rdf:first sg:person.07705373347.23
72 rdf:rest Na6bc6982cbee4a868afe689bcbfdeca3
73 Nd33a336607724db895fe84a9c40d7be5 rdf:first sg:person.013477654621.33
74 rdf:rest Nb5815e1ac08f4766b4a4febf7a7905e7
75 Ndc2ebd7118004c69bcc9f6d54bd0ca90 schema:name doi
76 schema:value 10.1007/s11071-018-4527-0
77 rdf:type schema:PropertyValue
78 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
79 schema:name Information and Computing Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
82 schema:name Artificial Intelligence and Image Processing
83 rdf:type schema:DefinedTerm
84 sg:journal.1040905 schema:issn 0924-090X
85 1573-269X
86 schema:name Nonlinear Dynamics
87 rdf:type schema:Periodical
88 sg:person.013477654621.33 schema:affiliation https://www.grid.ac/institutes/grid.440734.0
89 schema:familyName Wang
90 schema:givenName Bingfang
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477654621.33
92 rdf:type schema:Person
93 sg:person.07365514253.53 schema:affiliation https://www.grid.ac/institutes/grid.440734.0
94 schema:familyName Ge
95 schema:givenName Chao
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365514253.53
97 rdf:type schema:Person
98 sg:person.07705373347.23 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
99 schema:familyName Park
100 schema:givenName Ju H.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23
102 rdf:type schema:Person
103 sg:person.07762675577.28 schema:affiliation https://www.grid.ac/institutes/grid.413012.5
104 schema:familyName Hua
105 schema:givenName Changchun
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07762675577.28
107 rdf:type schema:Person
108 sg:pub.10.1007/s00034-013-9627-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1000754400
109 https://doi.org/10.1007/s00034-013-9627-y
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00034-013-9665-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015087058
112 https://doi.org/10.1007/s00034-013-9665-5
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s00034-014-9909-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1000337335
115 https://doi.org/10.1007/s00034-014-9909-z
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s00034-015-0105-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036811838
118 https://doi.org/10.1007/s00034-015-0105-6
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11071-010-9800-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043371531
121 https://doi.org/10.1007/s11071-010-9800-9
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11071-012-0697-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036626050
124 https://doi.org/10.1007/s11071-012-0697-3
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11071-013-0880-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011363247
127 https://doi.org/10.1007/s11071-013-0880-1
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11071-013-0946-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018503355
130 https://doi.org/10.1007/s11071-013-0946-0
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11071-015-2199-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013194601
133 https://doi.org/10.1007/s11071-015-2199-6
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11071-015-2401-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003815845
136 https://doi.org/10.1007/s11071-015-2401-x
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.amc.2014.07.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053673139
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.amc.2016.01.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021648053
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.amc.2017.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085182984
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.automatica.2004.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029600219
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.cnsns.2013.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002735668
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.fss.2017.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099710776
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.isatra.2015.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035870213
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jfranklin.2009.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022372827
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jfranklin.2011.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049728870
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jfranklin.2016.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030890793
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.jfranklin.2017.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085380848
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.nahs.2016.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043505855
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.neucom.2007.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046586304
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.physa.2006.12.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028979235
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/1674-1056/23/1/010504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059153331
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tac.2017.2670786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083936420
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tcyb.2014.2312004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579660
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tcyb.2018.2831782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103933599
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tnnls.2012.2205941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718139
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tnnls.2012.2236356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718224
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tnnls.2013.2271046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718350
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tnnls.2014.2334702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718628
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tnnls.2015.2392946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718773
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tsmcb.2012.2230441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797610
185 rdf:type schema:CreativeWork
186 https://www.grid.ac/institutes/grid.413012.5 schema:alternateName Yanshan University
187 schema:name Yanshan University, 066004, Qinhuangdao, People’s Republic of China
188 rdf:type schema:Organization
189 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
190 schema:name Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea
191 rdf:type schema:Organization
192 https://www.grid.ac/institutes/grid.440734.0 schema:alternateName Hebei United University
193 schema:name North China University of Science and Technology, 063009, Tangshan, People’s Republic of China
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...