Chaotic vibrations of flexible shallow axially symmetric shells View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-01-10

AUTHORS

A. V. Krysko, J. Awrejcewicz, A. A. Zakharova, I. V. Papkova, V. A. Krysko

ABSTRACT

In this work, chaotic dynamics of flexible spherical axially symmetric shallow shells subjected to sinusoidal transverse load is studied with emphasis put on the vibration modes. Chaos reliability is verified and validated by solving the implemented mathematical model by partial nonlinear equations governing the dynamics of flexible spherical shells and by estimating the signs of the largest Lyapunov exponents with the help of qualitatively different approaches. It is shown how the scenario of transition of the investigated shells from regular to chaotic vibrations depends on the boundary condition. The following cases are considered: (1) movable and fixed simple supports along the shell contours, taking into account shell stiffness (Feigenbaum scenario) and shell damping (Ruelle–Takens–Newhouse scenario), and (2) movable clamping (regular shell vibrations). The presence of dents, the location and character of which essentially depend on the shell geometric parameters, boundary conditions, and the external load parameters, is detected in some regions of the shell surface and discussed. More... »

PAGES

2271-2291

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-017-4013-0

DOI

http://dx.doi.org/10.1007/s11071-017-4013-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100290767


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Cybernetic Institute, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russian Federation", 
            "Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "A. V.", 
        "id": "sg:person.016017316223.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland", 
          "id": "http://www.grid.ac/institutes/grid.412284.9", 
          "name": [
            "Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awrejcewicz", 
        "givenName": "J.", 
        "id": "sg:person.012103132446.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cybernetic Institute, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Cybernetic Institute, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zakharova", 
        "givenName": "A. A.", 
        "id": "sg:person.013414240324.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013414240324.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Papkova", 
        "givenName": "I. V.", 
        "id": "sg:person.010261455615.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261455615.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "V. A.", 
        "id": "sg:person.015167266033.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00707-017-1821-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084023170", 
          "https://doi.org/10.1007/s00707-017-1821-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10409-011-0412-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045828555", 
          "https://doi.org/10.1007/s10409-011-0412-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-017-3727-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091243355", 
          "https://doi.org/10.1007/s11071-017-3727-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01107909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048384192", 
          "https://doi.org/10.1007/bf01107909"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-01-10", 
    "datePublishedReg": "2018-01-10", 
    "description": "In this work, chaotic dynamics of flexible spherical axially symmetric shallow shells subjected to sinusoidal transverse load is studied with emphasis put on the vibration modes. Chaos reliability is verified and validated by solving the implemented mathematical model by partial nonlinear equations governing the dynamics of flexible spherical shells and by estimating the signs of the largest Lyapunov exponents with the help of qualitatively different approaches. It is shown how the scenario of transition of the investigated shells from regular to chaotic vibrations depends on the boundary condition. The following cases are considered: (1) movable and fixed simple supports along the shell contours, taking into account shell stiffness (Feigenbaum scenario) and shell damping (Ruelle\u2013Takens\u2013Newhouse scenario), and (2) movable clamping (regular shell vibrations). The presence of dents, the location and character of which essentially depend on the shell geometric parameters, boundary conditions, and the external load parameters, is detected in some regions of the shell surface and discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11071-017-4013-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "keywords": [
      "shell geometric parameter", 
      "presence of dents", 
      "chaotic vibrations", 
      "boundary conditions", 
      "flexible spherical shells", 
      "sinusoidal transverse load", 
      "external load parameters", 
      "transverse load", 
      "shell stiffness", 
      "scenarios of transition", 
      "shallow shells", 
      "vibration modes", 
      "partial nonlinear equations", 
      "load parameters", 
      "geometric parameters", 
      "spherical shell", 
      "mathematical model", 
      "simple supports", 
      "shell surface", 
      "vibration", 
      "shell", 
      "nonlinear equations", 
      "stiffness", 
      "symmetric shell", 
      "largest Lyapunov exponent", 
      "damping", 
      "load", 
      "shell contours", 
      "parameters", 
      "dent", 
      "surface", 
      "conditions", 
      "Lyapunov exponents", 
      "equations", 
      "reliability", 
      "dynamics", 
      "mode", 
      "different approaches", 
      "exponent", 
      "work", 
      "contours", 
      "model", 
      "scenarios", 
      "location", 
      "chaotic dynamics", 
      "transition", 
      "help", 
      "approach", 
      "region", 
      "emphasis", 
      "clamping", 
      "presence", 
      "cases", 
      "character", 
      "support", 
      "signs", 
      "flexible spherical axially symmetric shallow shells", 
      "spherical axially symmetric shallow shells", 
      "axially symmetric shallow shells", 
      "symmetric shallow shells", 
      "Chaos reliability", 
      "account shell stiffness", 
      "shell damping", 
      "movable clamping"
    ], 
    "name": "Chaotic vibrations of flexible shallow axially symmetric shells", 
    "pagination": "2271-2291", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100290767"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-017-4013-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-017-4013-0", 
      "https://app.dimensions.ai/details/publication/pub.1100290767"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_758.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11071-017-4013-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-4013-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-4013-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-4013-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-4013-0'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      22 PREDICATES      93 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-017-4013-0 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nb51866b22bbd4bd9a905217d290dfbc4
4 schema:citation sg:pub.10.1007/bf01107909
5 sg:pub.10.1007/s00707-017-1821-8
6 sg:pub.10.1007/s10409-011-0412-5
7 sg:pub.10.1007/s11071-017-3727-3
8 schema:datePublished 2018-01-10
9 schema:datePublishedReg 2018-01-10
10 schema:description In this work, chaotic dynamics of flexible spherical axially symmetric shallow shells subjected to sinusoidal transverse load is studied with emphasis put on the vibration modes. Chaos reliability is verified and validated by solving the implemented mathematical model by partial nonlinear equations governing the dynamics of flexible spherical shells and by estimating the signs of the largest Lyapunov exponents with the help of qualitatively different approaches. It is shown how the scenario of transition of the investigated shells from regular to chaotic vibrations depends on the boundary condition. The following cases are considered: (1) movable and fixed simple supports along the shell contours, taking into account shell stiffness (Feigenbaum scenario) and shell damping (Ruelle–Takens–Newhouse scenario), and (2) movable clamping (regular shell vibrations). The presence of dents, the location and character of which essentially depend on the shell geometric parameters, boundary conditions, and the external load parameters, is detected in some regions of the shell surface and discussed.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree true
14 schema:isPartOf N0d478bd55c33420c9869ff72dee5c6b2
15 N8c2db2a45d8a4b56b248a299a73f2be7
16 sg:journal.1040905
17 schema:keywords Chaos reliability
18 Lyapunov exponents
19 account shell stiffness
20 approach
21 axially symmetric shallow shells
22 boundary conditions
23 cases
24 chaotic dynamics
25 chaotic vibrations
26 character
27 clamping
28 conditions
29 contours
30 damping
31 dent
32 different approaches
33 dynamics
34 emphasis
35 equations
36 exponent
37 external load parameters
38 flexible spherical axially symmetric shallow shells
39 flexible spherical shells
40 geometric parameters
41 help
42 largest Lyapunov exponent
43 load
44 load parameters
45 location
46 mathematical model
47 mode
48 model
49 movable clamping
50 nonlinear equations
51 parameters
52 partial nonlinear equations
53 presence
54 presence of dents
55 region
56 reliability
57 scenarios
58 scenarios of transition
59 shallow shells
60 shell
61 shell contours
62 shell damping
63 shell geometric parameter
64 shell stiffness
65 shell surface
66 signs
67 simple supports
68 sinusoidal transverse load
69 spherical axially symmetric shallow shells
70 spherical shell
71 stiffness
72 support
73 surface
74 symmetric shallow shells
75 symmetric shell
76 transition
77 transverse load
78 vibration
79 vibration modes
80 work
81 schema:name Chaotic vibrations of flexible shallow axially symmetric shells
82 schema:pagination 2271-2291
83 schema:productId N38b0ca51750c45b68aa6a8c2006d9ada
84 N546c3d95e62b4bb9aa64741b987d60c2
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100290767
86 https://doi.org/10.1007/s11071-017-4013-0
87 schema:sdDatePublished 2021-11-01T18:31
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N749f13e5d686401e98824d00651db053
90 schema:url https://doi.org/10.1007/s11071-017-4013-0
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N01fff091e3d6444b86fb1ee7c0ddafb2 rdf:first sg:person.012103132446.89
95 rdf:rest N57e6fe4053ff4200aa938fd26d90c8a6
96 N0d478bd55c33420c9869ff72dee5c6b2 schema:volumeNumber 91
97 rdf:type schema:PublicationVolume
98 N38b0ca51750c45b68aa6a8c2006d9ada schema:name doi
99 schema:value 10.1007/s11071-017-4013-0
100 rdf:type schema:PropertyValue
101 N546c3d95e62b4bb9aa64741b987d60c2 schema:name dimensions_id
102 schema:value pub.1100290767
103 rdf:type schema:PropertyValue
104 N57e6fe4053ff4200aa938fd26d90c8a6 rdf:first sg:person.013414240324.50
105 rdf:rest Naef57b93df224566b8d8bd56bf12e875
106 N749f13e5d686401e98824d00651db053 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 N8c2db2a45d8a4b56b248a299a73f2be7 schema:issueNumber 4
109 rdf:type schema:PublicationIssue
110 Naef57b93df224566b8d8bd56bf12e875 rdf:first sg:person.010261455615.35
111 rdf:rest Nb93601a33bdf49bcabb5ea6fdbfabd4d
112 Nb51866b22bbd4bd9a905217d290dfbc4 rdf:first sg:person.016017316223.58
113 rdf:rest N01fff091e3d6444b86fb1ee7c0ddafb2
114 Nb93601a33bdf49bcabb5ea6fdbfabd4d rdf:first sg:person.015167266033.92
115 rdf:rest rdf:nil
116 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
117 schema:name Mathematical Sciences
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
120 schema:name Pure Mathematics
121 rdf:type schema:DefinedTerm
122 sg:journal.1040905 schema:issn 0924-090X
123 1573-269X
124 schema:name Nonlinear Dynamics
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.010261455615.35 schema:affiliation grid-institutes:grid.78837.33
128 schema:familyName Papkova
129 schema:givenName I. V.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010261455615.35
131 rdf:type schema:Person
132 sg:person.012103132446.89 schema:affiliation grid-institutes:grid.412284.9
133 schema:familyName Awrejcewicz
134 schema:givenName J.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89
136 rdf:type schema:Person
137 sg:person.013414240324.50 schema:affiliation grid-institutes:grid.27736.37
138 schema:familyName Zakharova
139 schema:givenName A. A.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013414240324.50
141 rdf:type schema:Person
142 sg:person.015167266033.92 schema:affiliation grid-institutes:grid.78837.33
143 schema:familyName Krysko
144 schema:givenName V. A.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92
146 rdf:type schema:Person
147 sg:person.016017316223.58 schema:affiliation grid-institutes:grid.78837.33
148 schema:familyName Krysko
149 schema:givenName A. V.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58
151 rdf:type schema:Person
152 sg:pub.10.1007/bf01107909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048384192
153 https://doi.org/10.1007/bf01107909
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s00707-017-1821-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084023170
156 https://doi.org/10.1007/s00707-017-1821-8
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s10409-011-0412-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045828555
159 https://doi.org/10.1007/s10409-011-0412-5
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11071-017-3727-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091243355
162 https://doi.org/10.1007/s11071-017-3727-3
163 rdf:type schema:CreativeWork
164 grid-institutes:grid.27736.37 schema:alternateName Cybernetic Institute, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russian Federation
165 schema:name Cybernetic Institute, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russian Federation
166 rdf:type schema:Organization
167 grid-institutes:grid.412284.9 schema:alternateName Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland
168 schema:name Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland
169 rdf:type schema:Organization
170 grid-institutes:grid.78837.33 schema:alternateName Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russian Federation
171 Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russian Federation
172 schema:name Cybernetic Institute, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russian Federation
173 Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russian Federation
174 Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russian Federation
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...