Contact interaction of two rectangular plates made from different materials with an account of physical nonlinearity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-11-23

AUTHORS

J. Awrejcewicz, V. A. Krysko, M. V. Zhigalov, A. V. Krysko

ABSTRACT

A mathematical model of a contact interaction between two plates made from materials with different elasticity modulus is derived taking into account physical and design nonlinearities. In order to study the stress–strain state of this complex mechanical structure, the method of variational iteration has been employed allowing for reduction of partial differential equations to ordinary differential equations (ODEs). The theorem regarding convergence of this method is formulated for the class of similar-like problems. The convergence of the proposed iterational procedure used for obtaining a solution to contact problems of two plates is proved. In the studied case, the physical nonlinearity is introduced with the help of variable parameters associated with plate stiffness. The work is supplemented with a few numerical examples. Both Fourier and Morlet power spectra are employed to detect and analyse regular and chaotic vibrations of two interacting plates. More... »

PAGES

1191-1211

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-017-3939-6

DOI

http://dx.doi.org/10.1007/s11071-017-3939-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1092933438


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland", 
          "id": "http://www.grid.ac/institutes/grid.412284.9", 
          "name": [
            "Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awrejcewicz", 
        "givenName": "J.", 
        "id": "sg:person.012103132446.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "V. A.", 
        "id": "sg:person.015167266033.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhigalov", 
        "givenName": "M. V.", 
        "id": "sg:person.013131771141.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131771141.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cybernetic Institute, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Cybernetic Institute, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "A. V.", 
        "id": "sg:person.016017316223.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00885381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035337343", 
          "https://doi.org/10.1007/bf00885381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-85949-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028076699", 
          "https://doi.org/10.1007/978-3-642-85949-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-4232-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031465062", 
          "https://doi.org/10.1007/978-1-4614-4232-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-29364-5_25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022019268", 
          "https://doi.org/10.1007/978-3-662-29364-5_25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10483-015-1922-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019026575", 
          "https://doi.org/10.1007/s10483-015-1922-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-55677-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052347846", 
          "https://doi.org/10.1007/978-3-642-55677-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-016-2858-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046248062", 
          "https://doi.org/10.1007/s11071-016-2858-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11-23", 
    "datePublishedReg": "2017-11-23", 
    "description": "A mathematical model of a contact interaction between two plates made from materials with different elasticity modulus is derived taking into account physical and design nonlinearities. In order to study the stress\u2013strain state of this complex mechanical structure, the method of variational iteration has been employed allowing for reduction of partial differential equations to ordinary differential equations (ODEs). The theorem regarding convergence of this method is formulated for the class of similar-like problems. The convergence of the proposed iterational procedure used for obtaining a solution to contact problems of two plates is proved. In the studied case, the physical nonlinearity is introduced with the help of variable parameters associated with plate stiffness. The work is supplemented with a few numerical examples. Both Fourier and Morlet power spectra are employed to detect and analyse regular and chaotic vibrations of two interacting plates.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11071-017-3939-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "keywords": [
      "ordinary differential equations", 
      "differential equations", 
      "partial differential equations", 
      "physical nonlinearity", 
      "variational iteration", 
      "mathematical model", 
      "complex mechanical structure", 
      "chaotic vibrations", 
      "numerical examples", 
      "iterational procedure", 
      "stress-strain state", 
      "nonlinearity", 
      "contact problem", 
      "different elasticity moduli", 
      "equations", 
      "variable parameters", 
      "rectangular plates", 
      "convergence", 
      "mechanical structure", 
      "plate stiffness", 
      "elasticity modulus", 
      "contact interaction", 
      "different materials", 
      "power spectrum", 
      "problem", 
      "theorem", 
      "iteration", 
      "plate", 
      "class", 
      "solution", 
      "materials", 
      "modulus", 
      "stiffness", 
      "vibration", 
      "model", 
      "parameters", 
      "account", 
      "Fourier", 
      "method", 
      "help", 
      "procedure", 
      "order", 
      "structure", 
      "cases", 
      "work", 
      "state", 
      "analyse", 
      "reduction", 
      "interaction", 
      "example", 
      "spectra", 
      "design nonlinearities", 
      "similar-like problems", 
      "Morlet power spectra"
    ], 
    "name": "Contact interaction of two rectangular plates made from different materials with an account of physical nonlinearity", 
    "pagination": "1191-1211", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1092933438"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-017-3939-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-017-3939-6", 
      "https://app.dimensions.ai/details/publication/pub.1092933438"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_725.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11071-017-3939-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3939-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3939-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3939-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3939-6'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      22 PREDICATES      86 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-017-3939-6 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author N03bc78559ce343208e3267f68d61cfa2
4 schema:citation sg:pub.10.1007/978-1-4614-4232-5
5 sg:pub.10.1007/978-3-642-55677-7
6 sg:pub.10.1007/978-3-642-85949-6
7 sg:pub.10.1007/978-3-662-29364-5_25
8 sg:pub.10.1007/bf00885381
9 sg:pub.10.1007/s10483-015-1922-9
10 sg:pub.10.1007/s11071-016-2858-2
11 schema:datePublished 2017-11-23
12 schema:datePublishedReg 2017-11-23
13 schema:description A mathematical model of a contact interaction between two plates made from materials with different elasticity modulus is derived taking into account physical and design nonlinearities. In order to study the stress–strain state of this complex mechanical structure, the method of variational iteration has been employed allowing for reduction of partial differential equations to ordinary differential equations (ODEs). The theorem regarding convergence of this method is formulated for the class of similar-like problems. The convergence of the proposed iterational procedure used for obtaining a solution to contact problems of two plates is proved. In the studied case, the physical nonlinearity is introduced with the help of variable parameters associated with plate stiffness. The work is supplemented with a few numerical examples. Both Fourier and Morlet power spectra are employed to detect and analyse regular and chaotic vibrations of two interacting plates.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N65993af523f94139a346aebcbab49b6c
18 N711042ac6a87409cba937baea19f69ce
19 sg:journal.1040905
20 schema:keywords Fourier
21 Morlet power spectra
22 account
23 analyse
24 cases
25 chaotic vibrations
26 class
27 complex mechanical structure
28 contact interaction
29 contact problem
30 convergence
31 design nonlinearities
32 different elasticity moduli
33 different materials
34 differential equations
35 elasticity modulus
36 equations
37 example
38 help
39 interaction
40 iteration
41 iterational procedure
42 materials
43 mathematical model
44 mechanical structure
45 method
46 model
47 modulus
48 nonlinearity
49 numerical examples
50 order
51 ordinary differential equations
52 parameters
53 partial differential equations
54 physical nonlinearity
55 plate
56 plate stiffness
57 power spectrum
58 problem
59 procedure
60 rectangular plates
61 reduction
62 similar-like problems
63 solution
64 spectra
65 state
66 stiffness
67 stress-strain state
68 structure
69 theorem
70 variable parameters
71 variational iteration
72 vibration
73 work
74 schema:name Contact interaction of two rectangular plates made from different materials with an account of physical nonlinearity
75 schema:pagination 1191-1211
76 schema:productId Nb3515aebd757479aadb2cd63b497e493
77 Nbd90565464a34f05a2175535eca85c3a
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092933438
79 https://doi.org/10.1007/s11071-017-3939-6
80 schema:sdDatePublished 2021-11-01T18:28
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Ndd8060379bda4d6e9ee63c779ee94dc0
83 schema:url https://doi.org/10.1007/s11071-017-3939-6
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N03bc78559ce343208e3267f68d61cfa2 rdf:first sg:person.012103132446.89
88 rdf:rest N05cbc72c71c2468f8289225b37bdd25c
89 N05cbc72c71c2468f8289225b37bdd25c rdf:first sg:person.015167266033.92
90 rdf:rest Nfd236e8d94a14230b5884e7a52e94ef0
91 N0e759b52fae3443891cd3b7242c7c6d3 rdf:first sg:person.016017316223.58
92 rdf:rest rdf:nil
93 N65993af523f94139a346aebcbab49b6c schema:volumeNumber 91
94 rdf:type schema:PublicationVolume
95 N711042ac6a87409cba937baea19f69ce schema:issueNumber 2
96 rdf:type schema:PublicationIssue
97 Nb3515aebd757479aadb2cd63b497e493 schema:name doi
98 schema:value 10.1007/s11071-017-3939-6
99 rdf:type schema:PropertyValue
100 Nbd90565464a34f05a2175535eca85c3a schema:name dimensions_id
101 schema:value pub.1092933438
102 rdf:type schema:PropertyValue
103 Ndd8060379bda4d6e9ee63c779ee94dc0 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nfd236e8d94a14230b5884e7a52e94ef0 rdf:first sg:person.013131771141.82
106 rdf:rest N0e759b52fae3443891cd3b7242c7c6d3
107 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
108 schema:name Mathematical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
111 schema:name Numerical and Computational Mathematics
112 rdf:type schema:DefinedTerm
113 sg:journal.1040905 schema:issn 0924-090X
114 1573-269X
115 schema:name Nonlinear Dynamics
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.012103132446.89 schema:affiliation grid-institutes:grid.412284.9
119 schema:familyName Awrejcewicz
120 schema:givenName J.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89
122 rdf:type schema:Person
123 sg:person.013131771141.82 schema:affiliation grid-institutes:grid.78837.33
124 schema:familyName Zhigalov
125 schema:givenName M. V.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131771141.82
127 rdf:type schema:Person
128 sg:person.015167266033.92 schema:affiliation grid-institutes:grid.78837.33
129 schema:familyName Krysko
130 schema:givenName V. A.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92
132 rdf:type schema:Person
133 sg:person.016017316223.58 schema:affiliation grid-institutes:grid.27736.37
134 schema:familyName Krysko
135 schema:givenName A. V.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58
137 rdf:type schema:Person
138 sg:pub.10.1007/978-1-4614-4232-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031465062
139 https://doi.org/10.1007/978-1-4614-4232-5
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-642-55677-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052347846
142 https://doi.org/10.1007/978-3-642-55677-7
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-642-85949-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028076699
145 https://doi.org/10.1007/978-3-642-85949-6
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-3-662-29364-5_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022019268
148 https://doi.org/10.1007/978-3-662-29364-5_25
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf00885381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035337343
151 https://doi.org/10.1007/bf00885381
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s10483-015-1922-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019026575
154 https://doi.org/10.1007/s10483-015-1922-9
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11071-016-2858-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046248062
157 https://doi.org/10.1007/s11071-016-2858-2
158 rdf:type schema:CreativeWork
159 grid-institutes:grid.27736.37 schema:alternateName Cybernetic Institute, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russia
160 schema:name Cybernetic Institute, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russia
161 rdf:type schema:Organization
162 grid-institutes:grid.412284.9 schema:alternateName Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland
163 schema:name Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland
164 rdf:type schema:Organization
165 grid-institutes:grid.78837.33 schema:alternateName Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russia
166 schema:name Department of Mathematics and Modeling, Saratov State Technical University, 77 Politehnicheskaya Str., 410054, Saratov, Russia
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...