Further results on stabilization of neural-network-based systems using sampled-data control View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11

AUTHORS

Chao Ge, Hong Wang, Yajuan Liu, Ju H. Park

ABSTRACT

This paper investigates the problem of stabilization for sampled-data neural-network-based systems under variable sampling. A novel Lyapunov–Krasovskii functional (LKF) is introduced to the sampled-data systems. The benefit of the new approach is that the LKF develops more information about the actual sampling pattern. In addition, some symmetric matrices involved in the LKF are not required to be positive definite. Based on a recently introduced Wirtinger-based integral inequality that has been shown to be less conservative than Jensen’s inequality, much less conservative stabilization conditions are obtained to ensure the maximal sampling period and the minimal guaranteed cost control performance. Then, the corresponding sampled-data controllers can be synthesized by solving a set of linear matrix inequalities. Finally, an illustrative example is given to show the feasibility and effectiveness of the proposed method. More... »

PAGES

2209-2219

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-017-3796-3

DOI

http://dx.doi.org/10.1007/s11071-017-3796-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091687011


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hebei United University", 
          "id": "https://www.grid.ac/institutes/grid.440734.0", 
          "name": [
            "North China University of Science and Technology, 063009, Tangshan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ge", 
        "givenName": "Chao", 
        "id": "sg:person.07365514253.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365514253.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hebei United University", 
          "id": "https://www.grid.ac/institutes/grid.440734.0", 
          "name": [
            "North China University of Science and Technology, 063009, Tangshan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Hong", 
        "id": "sg:person.016271547742.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016271547742.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North China Electric Power University", 
          "id": "https://www.grid.ac/institutes/grid.261049.8", 
          "name": [
            "North China Electric Power University, 102206, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yajuan", 
        "id": "sg:person.010272216655.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010272216655.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju H.", 
        "id": "sg:person.07705373347.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11071-013-0805-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003491349", 
          "https://doi.org/10.1007/s11071-013-0805-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2009.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008513323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-015-2110-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013549468", 
          "https://doi.org/10.1007/s11071-015-2110-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-012-0404-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018196556", 
          "https://doi.org/10.1007/s11071-012-0404-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-012-0544-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018409670", 
          "https://doi.org/10.1007/s11071-012-0544-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2009.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021788695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2004.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029600219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/oca.2093", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040118761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2013.05.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044667730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0097-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046653755", 
          "https://doi.org/10.1007/s11071-011-0097-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-012-0350-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047212273", 
          "https://doi.org/10.1007/s11071-012-0350-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2007.02.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050207291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2013.10.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052591459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2012.0621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2007.899053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061476509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2013.2256015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061478717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2012.2215804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061567521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2016.2605685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061568575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2009.2015399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061570044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2011.2174242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2013.2249520", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2016.2566810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061607154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2016.2515073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061627714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2010.2042611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2012.2202687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2012.2236356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2013.2271046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2013.2285564", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2014.2306202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2014.2334702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2392946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2006.872262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2010.2050587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2012.2230441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797610"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "This paper investigates the problem of stabilization for sampled-data neural-network-based systems under variable sampling. A novel Lyapunov\u2013Krasovskii functional (LKF) is introduced to the sampled-data systems. The benefit of the new approach is that the LKF develops more information about the actual sampling pattern. In addition, some symmetric matrices involved in the LKF are not required to be positive definite. Based on a recently introduced Wirtinger-based integral inequality that has been shown to be less conservative than Jensen\u2019s inequality, much less conservative stabilization conditions are obtained to ensure the maximal sampling period and the minimal guaranteed cost control performance. Then, the corresponding sampled-data controllers can be synthesized by solving a set of linear matrix inequalities. Finally, an illustrative example is given to show the feasibility and effectiveness of the proposed method.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-017-3796-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "Further results on stabilization of neural-network-based systems using sampled-data control", 
    "pagination": "2209-2219", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7ed0588307633837a8c57fab3010fbdfd65e1faa95bf65537f36ad51a2efb01c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-017-3796-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091687011"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-017-3796-3", 
      "https://app.dimensions.ai/details/publication/pub.1091687011"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000525.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11071-017-3796-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3796-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3796-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3796-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3796-3'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-017-3796-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6d641a52f0164453a638f30908317e52
4 schema:citation sg:pub.10.1007/s11071-011-0097-0
5 sg:pub.10.1007/s11071-012-0350-1
6 sg:pub.10.1007/s11071-012-0404-4
7 sg:pub.10.1007/s11071-012-0544-6
8 sg:pub.10.1007/s11071-013-0805-z
9 sg:pub.10.1007/s11071-015-2110-5
10 https://doi.org/10.1002/oca.2093
11 https://doi.org/10.1016/j.amc.2013.10.075
12 https://doi.org/10.1016/j.automatica.2004.03.003
13 https://doi.org/10.1016/j.automatica.2007.02.022
14 https://doi.org/10.1016/j.automatica.2009.11.017
15 https://doi.org/10.1016/j.automatica.2013.05.030
16 https://doi.org/10.1016/j.fss.2009.06.010
17 https://doi.org/10.1049/iet-cta.2012.0621
18 https://doi.org/10.1109/tac.2007.899053
19 https://doi.org/10.1109/tac.2013.2256015
20 https://doi.org/10.1109/tcsi.2012.2215804
21 https://doi.org/10.1109/tcsi.2016.2605685
22 https://doi.org/10.1109/tcsii.2009.2015399
23 https://doi.org/10.1109/tfuzz.2011.2174242
24 https://doi.org/10.1109/tfuzz.2013.2249520
25 https://doi.org/10.1109/tfuzz.2016.2566810
26 https://doi.org/10.1109/tie.2016.2515073
27 https://doi.org/10.1109/tnn.2010.2042611
28 https://doi.org/10.1109/tnnls.2012.2202687
29 https://doi.org/10.1109/tnnls.2012.2236356
30 https://doi.org/10.1109/tnnls.2013.2271046
31 https://doi.org/10.1109/tnnls.2013.2285564
32 https://doi.org/10.1109/tnnls.2014.2306202
33 https://doi.org/10.1109/tnnls.2014.2334702
34 https://doi.org/10.1109/tnnls.2015.2392946
35 https://doi.org/10.1109/tsmcb.2006.872262
36 https://doi.org/10.1109/tsmcb.2010.2050587
37 https://doi.org/10.1109/tsmcb.2012.2230441
38 schema:datePublished 2017-11
39 schema:datePublishedReg 2017-11-01
40 schema:description This paper investigates the problem of stabilization for sampled-data neural-network-based systems under variable sampling. A novel Lyapunov–Krasovskii functional (LKF) is introduced to the sampled-data systems. The benefit of the new approach is that the LKF develops more information about the actual sampling pattern. In addition, some symmetric matrices involved in the LKF are not required to be positive definite. Based on a recently introduced Wirtinger-based integral inequality that has been shown to be less conservative than Jensen’s inequality, much less conservative stabilization conditions are obtained to ensure the maximal sampling period and the minimal guaranteed cost control performance. Then, the corresponding sampled-data controllers can be synthesized by solving a set of linear matrix inequalities. Finally, an illustrative example is given to show the feasibility and effectiveness of the proposed method.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N7dc6508618c34cfbaeab67ae8bbda500
45 N962a9a9c6b9c489697f6d6b3f408a88b
46 sg:journal.1040905
47 schema:name Further results on stabilization of neural-network-based systems using sampled-data control
48 schema:pagination 2209-2219
49 schema:productId N18a317a10ee5441a9a7c3db1062bdade
50 Ndbd8ab50260d47ab9a859c63129ef2d7
51 Ne1db4e05edbb4ddcaf4efcb269424eab
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091687011
53 https://doi.org/10.1007/s11071-017-3796-3
54 schema:sdDatePublished 2019-04-10T15:55
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N54afce6c638b40b2bcc95be9111b3d69
57 schema:url http://link.springer.com/10.1007%2Fs11071-017-3796-3
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N18a317a10ee5441a9a7c3db1062bdade schema:name doi
62 schema:value 10.1007/s11071-017-3796-3
63 rdf:type schema:PropertyValue
64 N54afce6c638b40b2bcc95be9111b3d69 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N6d641a52f0164453a638f30908317e52 rdf:first sg:person.07365514253.53
67 rdf:rest Nfd9dba424a2d41febec5292397d15bd7
68 N77b4cfd639a049e4aea1074f0d63f9ac rdf:first sg:person.07705373347.23
69 rdf:rest rdf:nil
70 N7dc6508618c34cfbaeab67ae8bbda500 schema:volumeNumber 90
71 rdf:type schema:PublicationVolume
72 N962a9a9c6b9c489697f6d6b3f408a88b schema:issueNumber 3
73 rdf:type schema:PublicationIssue
74 Ndbd8ab50260d47ab9a859c63129ef2d7 schema:name dimensions_id
75 schema:value pub.1091687011
76 rdf:type schema:PropertyValue
77 Ne1db4e05edbb4ddcaf4efcb269424eab schema:name readcube_id
78 schema:value 7ed0588307633837a8c57fab3010fbdfd65e1faa95bf65537f36ad51a2efb01c
79 rdf:type schema:PropertyValue
80 Ne442a99ac8bf4863a966857515a432ac rdf:first sg:person.010272216655.66
81 rdf:rest N77b4cfd639a049e4aea1074f0d63f9ac
82 Nfd9dba424a2d41febec5292397d15bd7 rdf:first sg:person.016271547742.85
83 rdf:rest Ne442a99ac8bf4863a966857515a432ac
84 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
85 schema:name Information and Computing Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
88 schema:name Artificial Intelligence and Image Processing
89 rdf:type schema:DefinedTerm
90 sg:journal.1040905 schema:issn 0924-090X
91 1573-269X
92 schema:name Nonlinear Dynamics
93 rdf:type schema:Periodical
94 sg:person.010272216655.66 schema:affiliation https://www.grid.ac/institutes/grid.261049.8
95 schema:familyName Liu
96 schema:givenName Yajuan
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010272216655.66
98 rdf:type schema:Person
99 sg:person.016271547742.85 schema:affiliation https://www.grid.ac/institutes/grid.440734.0
100 schema:familyName Wang
101 schema:givenName Hong
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016271547742.85
103 rdf:type schema:Person
104 sg:person.07365514253.53 schema:affiliation https://www.grid.ac/institutes/grid.440734.0
105 schema:familyName Ge
106 schema:givenName Chao
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365514253.53
108 rdf:type schema:Person
109 sg:person.07705373347.23 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
110 schema:familyName Park
111 schema:givenName Ju H.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23
113 rdf:type schema:Person
114 sg:pub.10.1007/s11071-011-0097-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046653755
115 https://doi.org/10.1007/s11071-011-0097-0
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11071-012-0350-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047212273
118 https://doi.org/10.1007/s11071-012-0350-1
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11071-012-0404-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018196556
121 https://doi.org/10.1007/s11071-012-0404-4
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11071-012-0544-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018409670
124 https://doi.org/10.1007/s11071-012-0544-6
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11071-013-0805-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003491349
127 https://doi.org/10.1007/s11071-013-0805-z
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11071-015-2110-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013549468
130 https://doi.org/10.1007/s11071-015-2110-5
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/oca.2093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040118761
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.amc.2013.10.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052591459
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.automatica.2004.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029600219
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.automatica.2007.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050207291
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.automatica.2009.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021788695
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.automatica.2013.05.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044667730
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.fss.2009.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008513323
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1049/iet-cta.2012.0621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056823607
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/tac.2007.899053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061476509
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/tac.2013.2256015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061478717
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tcsi.2012.2215804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061567521
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tcsi.2016.2605685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061568575
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tcsii.2009.2015399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061570044
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tfuzz.2011.2174242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606524
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tfuzz.2013.2249520 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606693
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tfuzz.2016.2566810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061607154
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tie.2016.2515073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061627714
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tnn.2010.2042611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717687
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tnnls.2012.2202687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718130
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tnnls.2012.2236356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718224
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tnnls.2013.2271046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718350
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tnnls.2013.2285564 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718438
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tnnls.2014.2306202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718533
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tnnls.2014.2334702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718628
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tnnls.2015.2392946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718773
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tsmcb.2006.872262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796609
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tsmcb.2010.2050587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797242
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/tsmcb.2012.2230441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797610
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.261049.8 schema:alternateName North China Electric Power University
189 schema:name North China Electric Power University, 102206, Beijing, People’s Republic of China
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
192 schema:name Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.440734.0 schema:alternateName Hebei United University
195 schema:name North China University of Science and Technology, 063009, Tangshan, People’s Republic of China
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...