Structure and dynamics of self-organized neuronal network with an improved STDP rule View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02-10

AUTHORS

Rong Wang, Ying Wu, Li Wang, Mengmeng Du, Jiajia Li

ABSTRACT

The chemical synapses in a neural network are known to be modulated by the neuronal firing activities through the spike-timing-dependent plasticity (STDP) rule. In this paper, we improve the multiplicative STDP rule by adding a momentum item with the aim of overcoming the low rate with which the neuronal network self-organizes into a stable complex structure. We find that the improved STDP rule with suitable momentum factors significantly speeds up the evolutionary process of the self-organized neuronal network. In addition, we explore the topological structure of self-organized neuronal network using complex network method. We show that the improved STDP rule generally results in a smaller node degree, clustering coefficient and modularity of self-organized neuronal network. Furthermore, we investigate the dynamical behaviors of self-organized neuronal network. We observe that depending on the momentum factor, the improved STDP rule has different effects on the network synchronization, neural information transmission, modularity and network complexity. Remarkably, for a specific momentum factor, the self-organized neuronal network shows the highest global efficiency of information transmission and the best combination between functional segregation and integration, which reflects the optimal dynamics as well as the topological structure. Our results provide a reasonable and efficient modulating rule of chemical synapse underlying the neuronal firing activities. More... »

PAGES

1855-1868

References to SciGraph publications

  • 2015-06-29. The dependence of synchronization transition processes of coupled neurons with coexisting spiking and bursting on the control parameter, initial value, and attraction domain in NONLINEAR DYNAMICS
  • 2014-05-11. Effects of channel blocks on the spiking regularity in clustered neuronal networks in SCIENCE CHINA TECHNOLOGICAL SCIENCES
  • 2016-07-30. Bifurcations and enhancement of neuronal firing induced by negative feedback in NONLINEAR DYNAMICS
  • 2015-04-24. Static and dynamic posterior cingulate cortex nodal topology of default mode network predicts attention task performance in BRAIN IMAGING AND BEHAVIOR
  • 2003-04. Changing excitation and inhibition in simulated neural networks: effects on induced bursting behavior in BIOLOGICAL CYBERNETICS
  • 2000-09. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity in NATURE NEUROSCIENCE
  • 2015-12-12. A review for dynamics of collective behaviors of network of neurons in SCIENCE CHINA TECHNOLOGICAL SCIENCES
  • 2000-11. Synaptic plasticity: taming the beast in NATURE NEUROSCIENCE
  • 2015-09-07. Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation in NONLINEAR DYNAMICS
  • 2004-04. Associative memory on a small-world neural network in THE EUROPEAN PHYSICAL JOURNAL B
  • 2002-12. Long-term dendritic spine stability in the adult cortex in NATURE
  • 2003-12-09. Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: a novel target for the treatment of working memory dysfunction in PSYCHOPHARMACOLOGY
  • 2009-02-04. Complex brain networks: graph theoretical analysis of structural and functional systems in NATURE REVIEWS NEUROSCIENCE
  • 2013-12-17. Global and local brain network reorganization in attention-deficit/hyperactivity disorder in BRAIN IMAGING AND BEHAVIOR
  • 2013-01-24. Simulating the formation of spiral wave in the neuronal system in NONLINEAR DYNAMICS
  • 2012-01-25. Conditional modulation of spike-timing-dependent plasticity for olfactory learning in NATURE
  • 2002-03. Spike-timing-dependent synaptic modification induced by natural spike trains in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11071-017-3348-x

    DOI

    http://dx.doi.org/10.1007/s11071-017-3348-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083756241


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China", 
              "id": "http://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Rong", 
            "id": "sg:person.01176165611.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176165611.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China", 
              "id": "http://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Ying", 
            "id": "sg:person.0703236511.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703236511.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.5012.6", 
              "name": [
                "Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Li", 
            "id": "sg:person.012731032464.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012731032464.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China", 
              "id": "http://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Du", 
            "givenName": "Mengmeng", 
            "id": "sg:person.07501007305.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07501007305.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China", 
              "id": "http://www.grid.ac/institutes/grid.43169.39", 
              "name": [
                "State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Jiajia", 
            "id": "sg:person.013664236611.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664236611.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1140/epjb/e2004-00144-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025204659", 
              "https://doi.org/10.1140/epjb/e2004-00144-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416433a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009755866", 
              "https://doi.org/10.1038/416433a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11682-015-9384-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034756826", 
              "https://doi.org/10.1007/s11682-015-9384-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00213-003-1673-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043884481", 
              "https://doi.org/10.1007/s00213-003-1673-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11431-014-5529-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001177922", 
              "https://doi.org/10.1007/s11431-014-5529-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/78829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009745377", 
              "https://doi.org/10.1038/78829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11071-016-2976-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014005255", 
              "https://doi.org/10.1007/s11071-016-2976-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01276", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031112982", 
              "https://doi.org/10.1038/nature01276"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11071-013-0767-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007745473", 
              "https://doi.org/10.1007/s11071-013-0767-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11071-015-2226-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027704025", 
              "https://doi.org/10.1007/s11071-015-2226-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11071-015-2368-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044283854", 
              "https://doi.org/10.1007/s11071-015-2368-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004953014", 
              "https://doi.org/10.1038/nrn2575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11682-013-9279-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012634590", 
              "https://doi.org/10.1007/s11682-013-9279-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046218135", 
              "https://doi.org/10.1038/nature10776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/81453", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001869026", 
              "https://doi.org/10.1038/81453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11431-015-5961-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039885657", 
              "https://doi.org/10.1007/s11431-015-5961-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-002-0381-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032811139", 
              "https://doi.org/10.1007/s00422-002-0381-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-10", 
        "datePublishedReg": "2017-02-10", 
        "description": "The chemical synapses in a neural network are known to be modulated by the neuronal firing activities through the spike-timing-dependent plasticity (STDP) rule. In this paper, we improve the multiplicative STDP rule by adding a momentum item with the aim of overcoming the low rate with which the neuronal network self-organizes into a stable complex structure. We find that the improved STDP rule with suitable momentum factors significantly speeds up the evolutionary process of the self-organized neuronal network. In addition, we explore the topological structure of self-organized neuronal network using complex network method. We show that the improved STDP rule generally results in a smaller node degree, clustering coefficient and modularity of self-organized neuronal network. Furthermore, we investigate the dynamical behaviors of self-organized neuronal network. We observe that depending on the momentum factor, the improved STDP rule has different effects on the network synchronization, neural information transmission, modularity and network complexity. Remarkably, for a specific momentum factor, the self-organized neuronal network shows the highest global efficiency of information transmission and the best combination between functional segregation and integration, which reflects the optimal dynamics as well as the topological structure. Our results provide a reasonable and efficient modulating rule of chemical synapse underlying the neuronal firing activities.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11071-017-3348-x", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7187542", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8120548", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1040905", 
            "issn": [
              "0924-090X", 
              "1573-269X"
            ], 
            "name": "Nonlinear Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "88"
          }
        ], 
        "keywords": [
          "neuronal firing activity", 
          "self-organized neuronal network", 
          "neuronal networks", 
          "firing activity", 
          "topological structure", 
          "dynamical behavior", 
          "smaller node degree", 
          "optimal dynamics", 
          "complex network method", 
          "network synchronization", 
          "neural information transmission", 
          "chemical synapse", 
          "STDP rule", 
          "lower rates", 
          "functional segregation", 
          "node degree", 
          "network complexity", 
          "network method", 
          "multiplicative STDP rule", 
          "complex structure", 
          "information transmission", 
          "higher global efficiency", 
          "stable complex structure", 
          "neural network", 
          "dynamics", 
          "factors", 
          "different effects", 
          "dependent plasticity rule", 
          "momentum item", 
          "synapse", 
          "network", 
          "plasticity rules", 
          "activity", 
          "momentum factor", 
          "global efficiency", 
          "rules", 
          "transmission", 
          "aim", 
          "synchronization", 
          "structure", 
          "modularity", 
          "complexity", 
          "evolutionary processes", 
          "rate", 
          "coefficient", 
          "effect", 
          "items", 
          "best combination", 
          "combination", 
          "addition", 
          "degree", 
          "efficiency", 
          "behavior", 
          "results", 
          "integration", 
          "process", 
          "method", 
          "chemicals", 
          "segregation", 
          "paper"
        ], 
        "name": "Structure and dynamics of self-organized neuronal network with an improved STDP rule", 
        "pagination": "1855-1868", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083756241"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11071-017-3348-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11071-017-3348-x", 
          "https://app.dimensions.ai/details/publication/pub.1083756241"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_728.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11071-017-3348-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3348-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3348-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3348-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-017-3348-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    220 TRIPLES      21 PREDICATES      101 URIs      76 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11071-017-3348-x schema:about anzsrc-for:01
    2 anzsrc-for:09
    3 schema:author Na8f98537a34e4bc1b912ff16b17f080c
    4 schema:citation sg:pub.10.1007/s00213-003-1673-x
    5 sg:pub.10.1007/s00422-002-0381-7
    6 sg:pub.10.1007/s11071-013-0767-1
    7 sg:pub.10.1007/s11071-015-2226-7
    8 sg:pub.10.1007/s11071-015-2368-7
    9 sg:pub.10.1007/s11071-016-2976-x
    10 sg:pub.10.1007/s11431-014-5529-x
    11 sg:pub.10.1007/s11431-015-5961-6
    12 sg:pub.10.1007/s11682-013-9279-3
    13 sg:pub.10.1007/s11682-015-9384-6
    14 sg:pub.10.1038/416433a
    15 sg:pub.10.1038/78829
    16 sg:pub.10.1038/81453
    17 sg:pub.10.1038/nature01276
    18 sg:pub.10.1038/nature10776
    19 sg:pub.10.1038/nrn2575
    20 sg:pub.10.1140/epjb/e2004-00144-7
    21 schema:datePublished 2017-02-10
    22 schema:datePublishedReg 2017-02-10
    23 schema:description The chemical synapses in a neural network are known to be modulated by the neuronal firing activities through the spike-timing-dependent plasticity (STDP) rule. In this paper, we improve the multiplicative STDP rule by adding a momentum item with the aim of overcoming the low rate with which the neuronal network self-organizes into a stable complex structure. We find that the improved STDP rule with suitable momentum factors significantly speeds up the evolutionary process of the self-organized neuronal network. In addition, we explore the topological structure of self-organized neuronal network using complex network method. We show that the improved STDP rule generally results in a smaller node degree, clustering coefficient and modularity of self-organized neuronal network. Furthermore, we investigate the dynamical behaviors of self-organized neuronal network. We observe that depending on the momentum factor, the improved STDP rule has different effects on the network synchronization, neural information transmission, modularity and network complexity. Remarkably, for a specific momentum factor, the self-organized neuronal network shows the highest global efficiency of information transmission and the best combination between functional segregation and integration, which reflects the optimal dynamics as well as the topological structure. Our results provide a reasonable and efficient modulating rule of chemical synapse underlying the neuronal firing activities.
    24 schema:genre article
    25 schema:isAccessibleForFree false
    26 schema:isPartOf N52cb348e2c5e44b1a31b363e4a6d8eb1
    27 Nd2a8621010e842bfa82ea0f0cabecab5
    28 sg:journal.1040905
    29 schema:keywords STDP rule
    30 activity
    31 addition
    32 aim
    33 behavior
    34 best combination
    35 chemical synapse
    36 chemicals
    37 coefficient
    38 combination
    39 complex network method
    40 complex structure
    41 complexity
    42 degree
    43 dependent plasticity rule
    44 different effects
    45 dynamical behavior
    46 dynamics
    47 effect
    48 efficiency
    49 evolutionary processes
    50 factors
    51 firing activity
    52 functional segregation
    53 global efficiency
    54 higher global efficiency
    55 information transmission
    56 integration
    57 items
    58 lower rates
    59 method
    60 modularity
    61 momentum factor
    62 momentum item
    63 multiplicative STDP rule
    64 network
    65 network complexity
    66 network method
    67 network synchronization
    68 neural information transmission
    69 neural network
    70 neuronal firing activity
    71 neuronal networks
    72 node degree
    73 optimal dynamics
    74 paper
    75 plasticity rules
    76 process
    77 rate
    78 results
    79 rules
    80 segregation
    81 self-organized neuronal network
    82 smaller node degree
    83 stable complex structure
    84 structure
    85 synapse
    86 synchronization
    87 topological structure
    88 transmission
    89 schema:name Structure and dynamics of self-organized neuronal network with an improved STDP rule
    90 schema:pagination 1855-1868
    91 schema:productId N5b8fb124f84b4c7ab62ce24119303196
    92 N99454b8b02b14e818d71b5a12aed2c7b
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083756241
    94 https://doi.org/10.1007/s11071-017-3348-x
    95 schema:sdDatePublished 2022-12-01T06:35
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher N19b5ec6600e84c598eb8dc41b5d9b447
    98 schema:url https://doi.org/10.1007/s11071-017-3348-x
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N19b5ec6600e84c598eb8dc41b5d9b447 schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 N5140b692268b487b8228375cd17a6cef rdf:first sg:person.07501007305.89
    105 rdf:rest Nf089f0aa95dc4921815d596a1ac977cf
    106 N52cb348e2c5e44b1a31b363e4a6d8eb1 schema:volumeNumber 88
    107 rdf:type schema:PublicationVolume
    108 N5b8fb124f84b4c7ab62ce24119303196 schema:name doi
    109 schema:value 10.1007/s11071-017-3348-x
    110 rdf:type schema:PropertyValue
    111 N99454b8b02b14e818d71b5a12aed2c7b schema:name dimensions_id
    112 schema:value pub.1083756241
    113 rdf:type schema:PropertyValue
    114 Na8f98537a34e4bc1b912ff16b17f080c rdf:first sg:person.01176165611.44
    115 rdf:rest Nc9c30a50493f415f943ee324eb7da7a8
    116 Nc355d31d1aa34db69299c092acbc46f8 rdf:first sg:person.012731032464.47
    117 rdf:rest N5140b692268b487b8228375cd17a6cef
    118 Nc9c30a50493f415f943ee324eb7da7a8 rdf:first sg:person.0703236511.41
    119 rdf:rest Nc355d31d1aa34db69299c092acbc46f8
    120 Nd2a8621010e842bfa82ea0f0cabecab5 schema:issueNumber 3
    121 rdf:type schema:PublicationIssue
    122 Nf089f0aa95dc4921815d596a1ac977cf rdf:first sg:person.013664236611.65
    123 rdf:rest rdf:nil
    124 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Mathematical Sciences
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Engineering
    129 rdf:type schema:DefinedTerm
    130 sg:grant.7187542 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-017-3348-x
    131 rdf:type schema:MonetaryGrant
    132 sg:grant.8120548 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-017-3348-x
    133 rdf:type schema:MonetaryGrant
    134 sg:journal.1040905 schema:issn 0924-090X
    135 1573-269X
    136 schema:name Nonlinear Dynamics
    137 schema:publisher Springer Nature
    138 rdf:type schema:Periodical
    139 sg:person.01176165611.44 schema:affiliation grid-institutes:grid.43169.39
    140 schema:familyName Wang
    141 schema:givenName Rong
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176165611.44
    143 rdf:type schema:Person
    144 sg:person.012731032464.47 schema:affiliation grid-institutes:grid.5012.6
    145 schema:familyName Wang
    146 schema:givenName Li
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012731032464.47
    148 rdf:type schema:Person
    149 sg:person.013664236611.65 schema:affiliation grid-institutes:grid.43169.39
    150 schema:familyName Li
    151 schema:givenName Jiajia
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013664236611.65
    153 rdf:type schema:Person
    154 sg:person.0703236511.41 schema:affiliation grid-institutes:grid.43169.39
    155 schema:familyName Wu
    156 schema:givenName Ying
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703236511.41
    158 rdf:type schema:Person
    159 sg:person.07501007305.89 schema:affiliation grid-institutes:grid.43169.39
    160 schema:familyName Du
    161 schema:givenName Mengmeng
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07501007305.89
    163 rdf:type schema:Person
    164 sg:pub.10.1007/s00213-003-1673-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043884481
    165 https://doi.org/10.1007/s00213-003-1673-x
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s00422-002-0381-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032811139
    168 https://doi.org/10.1007/s00422-002-0381-7
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s11071-013-0767-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007745473
    171 https://doi.org/10.1007/s11071-013-0767-1
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s11071-015-2226-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027704025
    174 https://doi.org/10.1007/s11071-015-2226-7
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s11071-015-2368-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044283854
    177 https://doi.org/10.1007/s11071-015-2368-7
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s11071-016-2976-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014005255
    180 https://doi.org/10.1007/s11071-016-2976-x
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s11431-014-5529-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001177922
    183 https://doi.org/10.1007/s11431-014-5529-x
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s11431-015-5961-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039885657
    186 https://doi.org/10.1007/s11431-015-5961-6
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s11682-013-9279-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012634590
    189 https://doi.org/10.1007/s11682-013-9279-3
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s11682-015-9384-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034756826
    192 https://doi.org/10.1007/s11682-015-9384-6
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1038/416433a schema:sameAs https://app.dimensions.ai/details/publication/pub.1009755866
    195 https://doi.org/10.1038/416433a
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1038/78829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009745377
    198 https://doi.org/10.1038/78829
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1038/81453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001869026
    201 https://doi.org/10.1038/81453
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature01276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031112982
    204 https://doi.org/10.1038/nature01276
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature10776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046218135
    207 https://doi.org/10.1038/nature10776
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nrn2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004953014
    210 https://doi.org/10.1038/nrn2575
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1140/epjb/e2004-00144-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025204659
    213 https://doi.org/10.1140/epjb/e2004-00144-7
    214 rdf:type schema:CreativeWork
    215 grid-institutes:grid.43169.39 schema:alternateName State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, 710049, Xi’an, China
    216 schema:name State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, 710049, Xi’an, China
    217 rdf:type schema:Organization
    218 grid-institutes:grid.5012.6 schema:alternateName Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
    219 schema:name Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
    220 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...