Ontology type: schema:ScholarlyArticle
2017-01
AUTHORSXiangyong Chen, Jinde Cao, Ju H. Park, Jianlong Qiu
ABSTRACTThis paper mainly addressed the stability analysis and the estimation of domain of attraction for the endemic equilibrium of a class of susceptible-exposed-infected-quarantine epidemic models. Firstly, we discuss the global stability of the disease-free equilibrium and the local stability of the endemic equilibrium in the feasible region D of the epidemic model, respectively. Secondly, we use a geometric approach to investigate the global stability of the endemic equilibrium in a positive invariant region Ds(⊂D). Furthermore, we estimates the domain of attraction for the endemic equilibrium via sum of squares optimization method, and obtain the optimal estimation by solving an semidefinite programming problem with sum of squares polynomial constraints. Finally, numerical simulation is examined to demonstrate the feasibility and effectiveness of the research results. More... »
PAGES975-985
http://scigraph.springernature.com/pub.10.1007/s11071-016-3092-7
DOIhttp://dx.doi.org/10.1007/s11071-016-3092-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1024938481
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Numerical and Computational Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Yeungnam University",
"id": "https://www.grid.ac/institutes/grid.413028.c",
"name": [
"School of Automation and Electrical Engineering, Linyi University, 276005, Linyi, Shandong, People\u2019s Republic of China",
"Department of Mathematics, Southeast University, 211189, Nanjing, People\u2019s Republic of China",
"Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Xiangyong",
"id": "sg:person.07670022465.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07670022465.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Southeast University",
"id": "https://www.grid.ac/institutes/grid.263826.b",
"name": [
"Department of Mathematics, Southeast University, 211189, Nanjing, People\u2019s Republic of China"
],
"type": "Organization"
},
"familyName": "Cao",
"givenName": "Jinde",
"id": "sg:person.01262551422.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262551422.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Yeungnam University",
"id": "https://www.grid.ac/institutes/grid.413028.c",
"name": [
"Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Park",
"givenName": "Ju H.",
"id": "sg:person.07705373347.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Linyi University",
"id": "https://www.grid.ac/institutes/grid.410747.1",
"name": [
"School of Automation and Electrical Engineering, Linyi University, 276005, Linyi, Shandong, People\u2019s Republic of China"
],
"type": "Organization"
},
"familyName": "Qiu",
"givenName": "Jianlong",
"id": "sg:person.011060115363.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011060115363.83"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.4134/bkms.2009.46.6.1237",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000072715"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.automatica.2008.03.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000201520"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1098/rspa.1932.0171",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000478346"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-009-9644-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003442065",
"https://doi.org/10.1007/s11071-009-9644-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-009-9644-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003442065",
"https://doi.org/10.1007/s11071-009-9644-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jinf.2004.03.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003601396"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1004012201",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-3516-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004012201",
"https://doi.org/10.1007/978-1-4757-3516-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-3516-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004012201",
"https://doi.org/10.1007/978-1-4757-3516-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-016-2646-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009747802",
"https://doi.org/10.1007/s11071-016-2646-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfranklin.2006.02.032",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010459517"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmaa.2014.08.019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011613451"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jtbi.2012.10.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017061780"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.amc.2014.05.136",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021217698"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4134/bkms.2012.49.3.517",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023454693"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.physa.2016.04.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023512276"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3182/20110828-6-it-1002.00947",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024143396"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1008311427709",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024228348",
"https://doi.org/10.1023/a:1008311427709"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmaa.2012.10.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024357096"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.amc.2011.07.007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029371112"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-85729-959-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031587269",
"https://doi.org/10.1007/978-0-85729-959-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-0-85729-959-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031587269",
"https://doi.org/10.1007/978-0-85729-959-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-010-9826-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032618565",
"https://doi.org/10.1007/s11071-010-9826-z"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jtbi.2011.06.025",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033549919"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jtbi.2006.09.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038679153"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.automatica.2009.02.011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039395457"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.camwa.2011.03.095",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041061641"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.matcom.2010.08.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041064407"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.sysconle.2006.10.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041791280"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1742-6596/90/1/012052",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043670575"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0025-5564(02)00111-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046258278"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1098/rspa.1927.0118",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047710630"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-011-0219-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052272795",
"https://doi.org/10.1007/s11071-011-0219-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/1674-1056/24/12/128710",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059154946"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.69.011606",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060730982"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.69.011606",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060730982"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tac.2012.2190189",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061478341"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s0036141094266449",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062876268"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.3934/dcdsb.2010.14.209",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1071736525"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/cdc.2002.1184354",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093612311"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-01",
"datePublishedReg": "2017-01-01",
"description": "This paper mainly addressed the stability analysis and the estimation of domain of attraction for the endemic equilibrium of a class of susceptible-exposed-infected-quarantine epidemic models. Firstly, we discuss the global stability of the disease-free equilibrium and the local stability of the endemic equilibrium in the feasible region D of the epidemic model, respectively. Secondly, we use a geometric approach to investigate the global stability of the endemic equilibrium in a positive invariant region Ds(\u2282D). Furthermore, we estimates the domain of attraction for the endemic equilibrium via sum of squares optimization method, and obtain the optimal estimation by solving an semidefinite programming problem with sum of squares polynomial constraints. Finally, numerical simulation is examined to demonstrate the feasibility and effectiveness of the research results.",
"genre": "research_article",
"id": "sg:pub.10.1007/s11071-016-3092-7",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7184059",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.7185096",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1040905",
"issn": [
"0924-090X",
"1573-269X"
],
"name": "Nonlinear Dynamics",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "87"
}
],
"name": "Stability analysis and estimation of domain of attraction for the endemic equilibrium of an SEIQ epidemic model",
"pagination": "975-985",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"76ce9a81220a24d6a0b59710d759ff5b6ca9cc9d82aa52492e132feac95ac73d"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11071-016-3092-7"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1024938481"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11071-016-3092-7",
"https://app.dimensions.ai/details/publication/pub.1024938481"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87104_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs11071-016-3092-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-3092-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-3092-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-3092-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-3092-7'
This table displays all metadata directly associated to this object as RDF triples.
208 TRIPLES
21 PREDICATES
63 URIs
19 LITERALS
7 BLANK NODES