On the contact interaction between two rectangular plates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06-03

AUTHORS

A. V. Krysko, J. Awrejcewicz, M. V. Zhigalov, V. A. Krysko

ABSTRACT

A mathematical model of contact interaction between two plates is presented, considering certain types of nonlinearity of each of the plates. Stress–strain state (SSS) of the interacting structural members is analyzed by the method of variational iterations, and the theorem of convergence of this method is provided. An iterative procedure for solving contact problems is developed and its convergence is also proved. Physical nonlinearity is considered by means of the method of variable parameters of elasticity. The SSS of a two-layer system of rectangular plates, depending on a type of boundary conditions as well as distances between plates, is investigated and supplemented with stress–strain curves σi(i)(ei(i))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _i^{(i)} (e_i^{(i)} )$$\end{document}for each of the plates. More... »

PAGES

2729-2748

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-016-2858-2

DOI

http://dx.doi.org/10.1007/s11071-016-2858-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046248062


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Numerical and Computational Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cybernetic Institute, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russian Federation", 
            "Cybernetic Institute, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "A. V.", 
        "id": "sg:person.016017316223.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Vehicles, Warsaw University of Technology, 84 Narbutta Str., 02-524, Warsaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.1035.7", 
          "name": [
            "Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland", 
            "Department of Vehicles, Warsaw University of Technology, 84 Narbutta Str., 02-524, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awrejcewicz", 
        "givenName": "J.", 
        "id": "sg:person.012103132446.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhigalov", 
        "givenName": "M. V.", 
        "id": "sg:person.013131771141.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131771141.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "V. A.", 
        "id": "sg:person.015167266033.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10958-014-1771-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004001654", 
          "https://doi.org/10.1007/s10958-014-1771-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11029-007-0038-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039615617", 
          "https://doi.org/10.1007/s11029-007-0038-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11029-007-0007-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048585360", 
          "https://doi.org/10.1007/s11029-007-0007-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10778-006-0064-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011388959", 
          "https://doi.org/10.1007/s10778-006-0064-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00885381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035337343", 
          "https://doi.org/10.1007/bf00885381"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06-03", 
    "datePublishedReg": "2016-06-03", 
    "description": "A mathematical model of contact interaction between two plates is presented, considering certain types of nonlinearity of each of the plates. Stress\u2013strain state (SSS) of the interacting structural members is analyzed by the method of variational iterations, and the theorem of convergence of this method is provided. An iterative procedure for solving contact problems is developed and its convergence is also proved. Physical nonlinearity is considered by means of the method of variable parameters of elasticity. The SSS of a two-layer system of rectangular plates, depending on a type of boundary conditions as well as distances between plates, is investigated and supplemented with stress\u2013strain curves \u03c3i(i)(ei(i))\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\sigma _i^{(i)} (e_i^{(i)} )$$\\end{document}for each of the plates.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11071-016-2858-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6746036", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4707212", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6742830", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "keywords": [
      "stress-strain state", 
      "rectangular plates", 
      "two-layer system", 
      "stress-strain curves", 
      "structural members", 
      "physical nonlinearity", 
      "contact interaction", 
      "contact problem", 
      "boundary conditions", 
      "mathematical model", 
      "plate", 
      "variable parameters", 
      "iterative procedure", 
      "nonlinearity", 
      "method", 
      "elasticity", 
      "variational iteration", 
      "parameters", 
      "conditions", 
      "system", 
      "model", 
      "curves", 
      "types", 
      "convergence", 
      "interaction", 
      "problem", 
      "means", 
      "distance", 
      "iteration", 
      "procedure", 
      "state", 
      "certain types", 
      "theorem", 
      "members", 
      "theorem of convergence"
    ], 
    "name": "On the contact interaction between two rectangular plates", 
    "pagination": "2729-2748", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046248062"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-016-2858-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-016-2858-2", 
      "https://app.dimensions.ai/details/publication/pub.1046248062"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_685.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11071-016-2858-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2858-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2858-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2858-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2858-2'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      22 PREDICATES      65 URIs      52 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-016-2858-2 schema:about anzsrc-for:01
2 anzsrc-for:0103
3 schema:author Nfc26aea8d919413daa2b3ae538e132d6
4 schema:citation sg:pub.10.1007/bf00885381
5 sg:pub.10.1007/s10778-006-0064-5
6 sg:pub.10.1007/s10958-014-1771-9
7 sg:pub.10.1007/s11029-007-0007-1
8 sg:pub.10.1007/s11029-007-0038-7
9 schema:datePublished 2016-06-03
10 schema:datePublishedReg 2016-06-03
11 schema:description A mathematical model of contact interaction between two plates is presented, considering certain types of nonlinearity of each of the plates. Stress–strain state (SSS) of the interacting structural members is analyzed by the method of variational iterations, and the theorem of convergence of this method is provided. An iterative procedure for solving contact problems is developed and its convergence is also proved. Physical nonlinearity is considered by means of the method of variable parameters of elasticity. The SSS of a two-layer system of rectangular plates, depending on a type of boundary conditions as well as distances between plates, is investigated and supplemented with stress–strain curves σi(i)(ei(i))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _i^{(i)} (e_i^{(i)} )$$\end{document}for each of the plates.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N5826f84d5eb6496492f08a059a7209a4
16 Na75b14bf27fc4b6eb1288409ced2f3b1
17 sg:journal.1040905
18 schema:keywords boundary conditions
19 certain types
20 conditions
21 contact interaction
22 contact problem
23 convergence
24 curves
25 distance
26 elasticity
27 interaction
28 iteration
29 iterative procedure
30 mathematical model
31 means
32 members
33 method
34 model
35 nonlinearity
36 parameters
37 physical nonlinearity
38 plate
39 problem
40 procedure
41 rectangular plates
42 state
43 stress-strain curves
44 stress-strain state
45 structural members
46 system
47 theorem
48 theorem of convergence
49 two-layer system
50 types
51 variable parameters
52 variational iteration
53 schema:name On the contact interaction between two rectangular plates
54 schema:pagination 2729-2748
55 schema:productId N12526bc1b16e4e969e4a4942d7f8a3c4
56 N48d7f56fb39a4d67931c3f851c01901f
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046248062
58 https://doi.org/10.1007/s11071-016-2858-2
59 schema:sdDatePublished 2021-11-01T18:25
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N7c441cd801af4368ac0899add80eff04
62 schema:url https://doi.org/10.1007/s11071-016-2858-2
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N12526bc1b16e4e969e4a4942d7f8a3c4 schema:name doi
67 schema:value 10.1007/s11071-016-2858-2
68 rdf:type schema:PropertyValue
69 N48d7f56fb39a4d67931c3f851c01901f schema:name dimensions_id
70 schema:value pub.1046248062
71 rdf:type schema:PropertyValue
72 N5826f84d5eb6496492f08a059a7209a4 schema:volumeNumber 85
73 rdf:type schema:PublicationVolume
74 N599b85c76cf9407395375d700133d64b rdf:first sg:person.012103132446.89
75 rdf:rest N9f90abb823184085aa7e1644d3228ca0
76 N7c441cd801af4368ac0899add80eff04 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 N9f90abb823184085aa7e1644d3228ca0 rdf:first sg:person.013131771141.82
79 rdf:rest Nc781f4e626a349a4bb51dae57c934654
80 Na75b14bf27fc4b6eb1288409ced2f3b1 schema:issueNumber 4
81 rdf:type schema:PublicationIssue
82 Nc781f4e626a349a4bb51dae57c934654 rdf:first sg:person.015167266033.92
83 rdf:rest rdf:nil
84 Nfc26aea8d919413daa2b3ae538e132d6 rdf:first sg:person.016017316223.58
85 rdf:rest N599b85c76cf9407395375d700133d64b
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
90 schema:name Numerical and Computational Mathematics
91 rdf:type schema:DefinedTerm
92 sg:grant.4707212 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-016-2858-2
93 rdf:type schema:MonetaryGrant
94 sg:grant.6742830 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-016-2858-2
95 rdf:type schema:MonetaryGrant
96 sg:grant.6746036 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-016-2858-2
97 rdf:type schema:MonetaryGrant
98 sg:journal.1040905 schema:issn 0924-090X
99 1573-269X
100 schema:name Nonlinear Dynamics
101 schema:publisher Springer Nature
102 rdf:type schema:Periodical
103 sg:person.012103132446.89 schema:affiliation grid-institutes:grid.1035.7
104 schema:familyName Awrejcewicz
105 schema:givenName J.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89
107 rdf:type schema:Person
108 sg:person.013131771141.82 schema:affiliation grid-institutes:grid.78837.33
109 schema:familyName Zhigalov
110 schema:givenName M. V.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013131771141.82
112 rdf:type schema:Person
113 sg:person.015167266033.92 schema:affiliation grid-institutes:grid.78837.33
114 schema:familyName Krysko
115 schema:givenName V. A.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92
117 rdf:type schema:Person
118 sg:person.016017316223.58 schema:affiliation grid-institutes:grid.27736.37
119 schema:familyName Krysko
120 schema:givenName A. V.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58
122 rdf:type schema:Person
123 sg:pub.10.1007/bf00885381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035337343
124 https://doi.org/10.1007/bf00885381
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10778-006-0064-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011388959
127 https://doi.org/10.1007/s10778-006-0064-5
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s10958-014-1771-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004001654
130 https://doi.org/10.1007/s10958-014-1771-9
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11029-007-0007-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048585360
133 https://doi.org/10.1007/s11029-007-0007-1
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11029-007-0038-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039615617
136 https://doi.org/10.1007/s11029-007-0038-7
137 rdf:type schema:CreativeWork
138 grid-institutes:grid.1035.7 schema:alternateName Department of Vehicles, Warsaw University of Technology, 84 Narbutta Str., 02-524, Warsaw, Poland
139 schema:name Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland
140 Department of Vehicles, Warsaw University of Technology, 84 Narbutta Str., 02-524, Warsaw, Poland
141 rdf:type schema:Organization
142 grid-institutes:grid.27736.37 schema:alternateName Cybernetic Institute, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation
143 schema:name Cybernetic Institute, National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050, Tomsk, Russian Federation
144 Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russian Federation
145 rdf:type schema:Organization
146 grid-institutes:grid.78837.33 schema:alternateName Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russian Federation
147 schema:name Department of Mathematics and Modelling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russian Federation
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...