Topology and parameters recognition of uncertain complex networks via nonidentical adaptive synchronization View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09

AUTHORS

Ze Tang, Ju H. Park, Tae H. Lee

ABSTRACT

Topology plays an essential role in chaotic behaviors and evolution performances of a complex dynamical network. In this paper, recognition issue for unknown system parameters and topology of uncertain general complex dynamical networks with nonlinear couplings and time-varying delay is investigated through generalized outer synchronization. Firstly, the unknown system parameters and topology in master network are successfully estimated by a slave network. Secondly, the unknown system parameters of both two networks and the unknown topology of the master network are effectively evaluated in view of generalized outer synchronization based on an adaptive feedback control strategy. Two situations of parameters and topologies recognition are efficiently verified by illustrative numerical simulations. More... »

PAGES

2171-2181

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-016-2822-1

DOI

http://dx.doi.org/10.1007/s11071-016-2822-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037977325


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyonsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tang", 
        "givenName": "Ze", 
        "id": "sg:person.014326452016.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326452016.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyonsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju H.", 
        "id": "sg:person.07705373347.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyonsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Tae H.", 
        "id": "sg:person.012713357021.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012713357021.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11071-012-0500-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000741175", 
          "https://doi.org/10.1007/s11071-012-0500-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-013-1102-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004135052", 
          "https://doi.org/10.1007/s11071-013-1102-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.016116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005004394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.016116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005004394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2014.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005183509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2010.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006540906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.02.148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006748077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-013-0854-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007430203", 
          "https://doi.org/10.1007/s11071-013-0854-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1847-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011209759", 
          "https://doi.org/10.1007/s11071-014-1847-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-015-5826-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013933948", 
          "https://doi.org/10.1007/s11431-015-5826-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01360282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014646741", 
          "https://doi.org/10.1007/bf01360282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2009.03.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015116760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2014.04.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015959178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.066212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016655184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.066212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016655184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020426202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022342218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2014.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022974363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-014-5534-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024039915", 
          "https://doi.org/10.1007/s11431-014-5534-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2015.02.080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027271967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2014.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029995133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2013.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031874231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9896-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037334634", 
          "https://doi.org/10.1007/s11071-010-9896-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2012.09.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043547429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10827-010-0262-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044262016", 
          "https://doi.org/10.1007/s10827-010-0262-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.arcontrol.2014.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045323879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2007.10.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047524466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1087361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048921070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeconom.2006.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049818552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3072787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057909691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.052818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.90.052818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060746853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060819260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2005.859050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061565591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2013.2285699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061567837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2014.2334951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061568039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2009.2015381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061570032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217979214502397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062938890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2014.6853621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093275413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556635"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "Topology plays an essential role in chaotic behaviors and evolution performances of a complex dynamical network. In this paper, recognition issue for unknown system parameters and topology of uncertain general complex dynamical networks with nonlinear couplings and time-varying delay is investigated through generalized outer synchronization. Firstly, the unknown system parameters and topology in master network are successfully estimated by a slave network. Secondly, the unknown system parameters of both two networks and the unknown topology of the master network are effectively evaluated in view of generalized outer synchronization based on an adaptive feedback control strategy. Two situations of parameters and topologies recognition are efficiently verified by illustrative numerical simulations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-016-2822-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7480920", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "name": "Topology and parameters recognition of uncertain complex networks via nonidentical adaptive synchronization", 
    "pagination": "2171-2181", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b4e94b3ebf7387cf185971adc2c88e2871a451718c51c3ed84cdb315699912b8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-016-2822-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037977325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-016-2822-1", 
      "https://app.dimensions.ai/details/publication/pub.1037977325"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11071-016-2822-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2822-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2822-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2822-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2822-1'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-016-2822-1 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N15f2a2e005474e5bb1e8e40eb2eb700c
4 schema:citation sg:pub.10.1007/bf01360282
5 sg:pub.10.1007/s10827-010-0262-3
6 sg:pub.10.1007/s11071-010-9896-y
7 sg:pub.10.1007/s11071-012-0500-5
8 sg:pub.10.1007/s11071-013-0854-3
9 sg:pub.10.1007/s11071-013-1102-6
10 sg:pub.10.1007/s11071-014-1847-6
11 sg:pub.10.1007/s11431-014-5534-0
12 sg:pub.10.1007/s11431-015-5826-z
13 https://doi.org/10.1016/j.amc.2015.02.080
14 https://doi.org/10.1016/j.arcontrol.2014.09.003
15 https://doi.org/10.1016/j.automatica.2009.03.022
16 https://doi.org/10.1016/j.automatica.2014.04.012
17 https://doi.org/10.1016/j.cnsns.2010.11.003
18 https://doi.org/10.1016/j.cnsns.2014.12.004
19 https://doi.org/10.1016/j.ejor.2014.03.012
20 https://doi.org/10.1016/j.ins.2014.02.148
21 https://doi.org/10.1016/j.jeconom.2006.07.020
22 https://doi.org/10.1016/j.jfranklin.2013.11.006
23 https://doi.org/10.1016/j.neunet.2014.02.013
24 https://doi.org/10.1016/j.neuroimage.2009.10.003
25 https://doi.org/10.1016/j.nonrwa.2012.09.009
26 https://doi.org/10.1016/j.physa.2006.09.020
27 https://doi.org/10.1016/j.physa.2007.10.030
28 https://doi.org/10.1063/1.3072787
29 https://doi.org/10.1103/physreve.71.016116
30 https://doi.org/10.1103/physreve.75.066212
31 https://doi.org/10.1103/physreve.90.052818
32 https://doi.org/10.1103/physrevlett.82.3042
33 https://doi.org/10.1109/icassp.2014.6853621
34 https://doi.org/10.1109/tcsi.2005.859050
35 https://doi.org/10.1109/tcsi.2013.2285699
36 https://doi.org/10.1109/tcsi.2014.2334951
37 https://doi.org/10.1109/tcsii.2009.2015381
38 https://doi.org/10.1126/science.1087361
39 https://doi.org/10.1137/1.9781611970432
40 https://doi.org/10.1142/s0217979214502397
41 schema:datePublished 2016-09
42 schema:datePublishedReg 2016-09-01
43 schema:description Topology plays an essential role in chaotic behaviors and evolution performances of a complex dynamical network. In this paper, recognition issue for unknown system parameters and topology of uncertain general complex dynamical networks with nonlinear couplings and time-varying delay is investigated through generalized outer synchronization. Firstly, the unknown system parameters and topology in master network are successfully estimated by a slave network. Secondly, the unknown system parameters of both two networks and the unknown topology of the master network are effectively evaluated in view of generalized outer synchronization based on an adaptive feedback control strategy. Two situations of parameters and topologies recognition are efficiently verified by illustrative numerical simulations.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N9392c0de124d49ce9c3141f9b2e11429
48 Nea8403c09a4148479d79b73d0612c4c0
49 sg:journal.1040905
50 schema:name Topology and parameters recognition of uncertain complex networks via nonidentical adaptive synchronization
51 schema:pagination 2171-2181
52 schema:productId N0ec7382f6a074041812a790d00326820
53 N722e49a351c143ceafaadc9f4c7de91b
54 Nb69d7961034f4ca2b7e8b1c43ab02570
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037977325
56 https://doi.org/10.1007/s11071-016-2822-1
57 schema:sdDatePublished 2019-04-10T20:47
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N3857c53592694e4fa00ad9cb9413ed2a
60 schema:url http://link.springer.com/10.1007%2Fs11071-016-2822-1
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0ec7382f6a074041812a790d00326820 schema:name dimensions_id
65 schema:value pub.1037977325
66 rdf:type schema:PropertyValue
67 N15f2a2e005474e5bb1e8e40eb2eb700c rdf:first sg:person.014326452016.89
68 rdf:rest N8285e677bb8b4c8da96492f9b57dbbf3
69 N3857c53592694e4fa00ad9cb9413ed2a schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N722e49a351c143ceafaadc9f4c7de91b schema:name doi
72 schema:value 10.1007/s11071-016-2822-1
73 rdf:type schema:PropertyValue
74 N8285e677bb8b4c8da96492f9b57dbbf3 rdf:first sg:person.07705373347.23
75 rdf:rest Nb733ef3e1a7442a68bb13c3fdd78d98d
76 N9392c0de124d49ce9c3141f9b2e11429 schema:volumeNumber 85
77 rdf:type schema:PublicationVolume
78 Nb69d7961034f4ca2b7e8b1c43ab02570 schema:name readcube_id
79 schema:value b4e94b3ebf7387cf185971adc2c88e2871a451718c51c3ed84cdb315699912b8
80 rdf:type schema:PropertyValue
81 Nb733ef3e1a7442a68bb13c3fdd78d98d rdf:first sg:person.012713357021.41
82 rdf:rest rdf:nil
83 Nea8403c09a4148479d79b73d0612c4c0 schema:issueNumber 4
84 rdf:type schema:PublicationIssue
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
89 schema:name Applied Mathematics
90 rdf:type schema:DefinedTerm
91 sg:grant.7480920 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-016-2822-1
92 rdf:type schema:MonetaryGrant
93 sg:journal.1040905 schema:issn 0924-090X
94 1573-269X
95 schema:name Nonlinear Dynamics
96 rdf:type schema:Periodical
97 sg:person.012713357021.41 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
98 schema:familyName Lee
99 schema:givenName Tae H.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012713357021.41
101 rdf:type schema:Person
102 sg:person.014326452016.89 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
103 schema:familyName Tang
104 schema:givenName Ze
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326452016.89
106 rdf:type schema:Person
107 sg:person.07705373347.23 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
108 schema:familyName Park
109 schema:givenName Ju H.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23
111 rdf:type schema:Person
112 sg:pub.10.1007/bf01360282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014646741
113 https://doi.org/10.1007/bf01360282
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s10827-010-0262-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044262016
116 https://doi.org/10.1007/s10827-010-0262-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s11071-010-9896-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037334634
119 https://doi.org/10.1007/s11071-010-9896-y
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11071-012-0500-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000741175
122 https://doi.org/10.1007/s11071-012-0500-5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11071-013-0854-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007430203
125 https://doi.org/10.1007/s11071-013-0854-3
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11071-013-1102-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004135052
128 https://doi.org/10.1007/s11071-013-1102-6
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11071-014-1847-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011209759
131 https://doi.org/10.1007/s11071-014-1847-6
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s11431-014-5534-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024039915
134 https://doi.org/10.1007/s11431-014-5534-0
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s11431-015-5826-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013933948
137 https://doi.org/10.1007/s11431-015-5826-z
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.amc.2015.02.080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027271967
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.arcontrol.2014.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045323879
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.automatica.2009.03.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015116760
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.automatica.2014.04.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015959178
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.cnsns.2010.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006540906
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.cnsns.2014.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005183509
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.ejor.2014.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022974363
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.ins.2014.02.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006748077
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.jeconom.2006.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049818552
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jfranklin.2013.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031874231
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.neunet.2014.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029995133
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.neuroimage.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022342218
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.nonrwa.2012.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043547429
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.physa.2006.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020426202
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.physa.2007.10.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047524466
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1063/1.3072787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057909691
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physreve.71.016116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005004394
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physreve.75.066212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016655184
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physreve.90.052818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060746853
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.82.3042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060819260
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/icassp.2014.6853621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093275413
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tcsi.2005.859050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061565591
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tcsi.2013.2285699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061567837
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tcsi.2014.2334951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061568039
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tcsii.2009.2015381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061570032
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1126/science.1087361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048921070
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1137/1.9781611970432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556635
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1142/s0217979214502397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062938890
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
196 schema:name Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyonsan, Republic of Korea
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...