Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-07

AUTHORS

G. S. F. Frederico, M. J. Lazo

ABSTRACT

Since the seminal work of Emmy Noether, it is well know that all conservations laws in physics, e.g., conservation of energy or conservation of momentum, are directly related to the invariance of the action under a family of transformations. However, the classical Noether’s theorem cannot yield information about constants of motion for non-conservative systems since it is not possible to formulate physically meaningful Lagrangians for this kind of systems in classical calculus of variation. On the other hand, in recent years the fractional calculus of variation within Lagrangians depending on fractional derivatives has emerged as an elegant alternative to study non-conservative systems. In the present work, we obtained a generalization of the Noether’s theorem for Lagrangians depending on mixed classical and Caputo derivatives that can be used to obtain constants of motion for dissipative systems. In addition, we also obtained Noether’s conditions for the fractional optimal control problem. More... »

PAGES

839-851

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-016-2727-z

DOI

http://dx.doi.org/10.1007/s11071-016-2727-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004773074


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cape Verde", 
          "id": "https://www.grid.ac/institutes/grid.442758.8", 
          "name": [
            "Department of Science and Technology, University of Cape Verde, Praia, Santiago, Cabo Verde", 
            "Department of Mathematics, Federal University of Santa Catarina, Florian\u00f3pilis, SC, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frederico", 
        "givenName": "G. S. F.", 
        "id": "sg:person.015044306153.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015044306153.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal University of Rio Grande do Sul", 
          "id": "https://www.grid.ac/institutes/grid.8532.c", 
          "name": [
            "Institute of Mathematics, Statistics and Physics, Federal University of Rio Grande, Rio Grande, RS, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lazo", 
        "givenName": "M. J.", 
        "id": "sg:person.013477200361.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477200361.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.na.2011.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001851059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10773-011-1010-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005127957", 
          "https://doi.org/10.1007/s10773-011-1010-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.056108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005856750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.66.056108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005856750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-247x(02)00180-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008278786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2010.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009736246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-015-2042-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009951060", 
          "https://doi.org/10.1007/s11071-015-2042-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(00)00201-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011372923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(00)00201-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011372923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-012-0203-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011487204", 
          "https://doi.org/10.1007/s10957-012-0203-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.17.5.311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011743867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/5/055203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013251203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/5/055203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013251203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/s1110757x02110102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017937459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2008.01.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018482323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019104709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019104709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6042-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019431047", 
          "https://doi.org/10.1007/978-1-4020-6042-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-6042-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019431047", 
          "https://doi.org/10.1007/978-1-4020-6042-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.037201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020545523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.75.037201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020545523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10582-006-0406-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020858659", 
          "https://doi.org/10.1007/s10582-006-0406-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10582-006-0406-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020858659", 
          "https://doi.org/10.1007/s10582-006-0406-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2483292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021842963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1769611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023807898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/40/24/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024751205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-007-9309-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025672135", 
          "https://doi.org/10.1007/s11071-007-9309-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-015-2005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027328591", 
          "https://doi.org/10.1007/s11071-015-2005-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2010.05.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030283292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02820620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030509226", 
          "https://doi.org/10.1007/bf02820620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00036810701584583", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033307470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1378-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034411112", 
          "https://doi.org/10.1007/s11071-014-1378-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016547232119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037288508", 
          "https://doi.org/10.1023/a:1016547232119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4903991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038554417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2012.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038959752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2011.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040455164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2008.06.063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041735172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0370-1573(00)00070-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042976136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2011.08.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044287932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2010)120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247020", 
          "https://doi.org/10.1007/jhep03(2010)120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep03(2010)120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045247020", 
          "https://doi.org/10.1007/jhep03(2010)120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.2478/s13540-013-0030-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045431514", 
          "https://doi.org/10.2478/s13540-013-0030-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2007.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046088438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207177308932544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051326613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2010.01.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051614486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.3581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.3581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060720611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217732306020974", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062913842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1238/physica.regular.064a00020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064437661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3166/ejc.8.56-63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071064664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3934/jimo.2014.10.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071740181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/8072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098841454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098933244"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "Since the seminal work of Emmy Noether, it is well know that all conservations laws in physics, e.g., conservation of energy or conservation of momentum, are directly related to the invariance of the action under a family of transformations. However, the classical Noether\u2019s theorem cannot yield information about constants of motion for non-conservative systems since it is not possible to formulate physically meaningful Lagrangians for this kind of systems in classical calculus of variation. On the other hand, in recent years the fractional calculus of variation within Lagrangians depending on fractional derivatives has emerged as an elegant alternative to study non-conservative systems. In the present work, we obtained a generalization of the Noether\u2019s theorem for Lagrangians depending on mixed classical and Caputo derivatives that can be used to obtain constants of motion for dissipative systems. In addition, we also obtained Noether\u2019s conditions for the fractional optimal control problem.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-016-2727-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "85"
      }
    ], 
    "name": "Fractional Noether\u2019s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems", 
    "pagination": "839-851", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "16be3eb6d7001563f3ea6b46d3084853443970d51c2e169b74db65cc2de53b19"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-016-2727-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004773074"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-016-2727-z", 
      "https://app.dimensions.ai/details/publication/pub.1004773074"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11071-016-2727-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2727-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2727-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2727-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-016-2727-z'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      71 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-016-2727-z schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ncbf1f6f3467d4807b3ebac4b4a39e1f0
4 schema:citation sg:pub.10.1007/978-1-4020-6042-7
5 sg:pub.10.1007/bf02820620
6 sg:pub.10.1007/jhep03(2010)120
7 sg:pub.10.1007/s10582-006-0406-x
8 sg:pub.10.1007/s10773-011-1010-9
9 sg:pub.10.1007/s10957-012-0203-6
10 sg:pub.10.1007/s11071-007-9309-z
11 sg:pub.10.1007/s11071-014-1378-1
12 sg:pub.10.1007/s11071-015-2005-5
13 sg:pub.10.1007/s11071-015-2042-0
14 sg:pub.10.1023/a:1016547232119
15 sg:pub.10.2478/s13540-013-0030-y
16 https://doi.org/10.1016/j.amc.2010.01.100
17 https://doi.org/10.1016/j.chaos.2011.03.002
18 https://doi.org/10.1016/j.cnsns.2010.05.027
19 https://doi.org/10.1016/j.cnsns.2010.07.016
20 https://doi.org/10.1016/j.cnsns.2012.09.003
21 https://doi.org/10.1016/j.jmaa.2007.01.013
22 https://doi.org/10.1016/j.na.2011.01.010
23 https://doi.org/10.1016/j.physleta.2008.01.037
24 https://doi.org/10.1016/j.physleta.2008.06.063
25 https://doi.org/10.1016/j.physleta.2011.08.033
26 https://doi.org/10.1016/s0022-247x(02)00180-4
27 https://doi.org/10.1016/s0370-1573(00)00070-3
28 https://doi.org/10.1016/s0375-9601(00)00201-2
29 https://doi.org/10.1063/1.1769611
30 https://doi.org/10.1063/1.2483292
31 https://doi.org/10.1063/1.4903991
32 https://doi.org/10.1073/pnas.17.5.311
33 https://doi.org/10.1080/00036810701584583
34 https://doi.org/10.1080/00207177308932544
35 https://doi.org/10.1088/1751-8113/40/24/003
36 https://doi.org/10.1088/1751-8113/43/5/055203
37 https://doi.org/10.1103/physreve.55.3581
38 https://doi.org/10.1103/physreve.66.056108
39 https://doi.org/10.1103/physreve.75.037201
40 https://doi.org/10.1103/physrevlett.82.1136
41 https://doi.org/10.1142/8072
42 https://doi.org/10.1142/p871
43 https://doi.org/10.1142/s0217732306020974
44 https://doi.org/10.1155/s1110757x02110102
45 https://doi.org/10.1238/physica.regular.064a00020
46 https://doi.org/10.3166/ejc.8.56-63
47 https://doi.org/10.3934/jimo.2014.10.363
48 schema:datePublished 2016-07
49 schema:datePublishedReg 2016-07-01
50 schema:description Since the seminal work of Emmy Noether, it is well know that all conservations laws in physics, e.g., conservation of energy or conservation of momentum, are directly related to the invariance of the action under a family of transformations. However, the classical Noether’s theorem cannot yield information about constants of motion for non-conservative systems since it is not possible to formulate physically meaningful Lagrangians for this kind of systems in classical calculus of variation. On the other hand, in recent years the fractional calculus of variation within Lagrangians depending on fractional derivatives has emerged as an elegant alternative to study non-conservative systems. In the present work, we obtained a generalization of the Noether’s theorem for Lagrangians depending on mixed classical and Caputo derivatives that can be used to obtain constants of motion for dissipative systems. In addition, we also obtained Noether’s conditions for the fractional optimal control problem.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N025d48e2e04245c78bf7a38bdff6b349
55 Nead4b57223844c8493d3c09915effb2f
56 sg:journal.1040905
57 schema:name Fractional Noether’s theorem with classical and Caputo derivatives: constants of motion for non-conservative systems
58 schema:pagination 839-851
59 schema:productId Nb95b8a647e7941999dd382f38496c489
60 Nc975b5e614cb44a3ad92f38e6a8809da
61 Nfb376dba11ce4d7bbabee162d03ab94d
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004773074
63 https://doi.org/10.1007/s11071-016-2727-z
64 schema:sdDatePublished 2019-04-10T14:09
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N36c6277bae1b44e7985753fc84e6adbd
67 schema:url http://link.springer.com/10.1007%2Fs11071-016-2727-z
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N025d48e2e04245c78bf7a38bdff6b349 schema:issueNumber 2
72 rdf:type schema:PublicationIssue
73 N2562d515c86d47bfa40e5bf7dbad89c4 rdf:first sg:person.013477200361.99
74 rdf:rest rdf:nil
75 N36c6277bae1b44e7985753fc84e6adbd schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nb95b8a647e7941999dd382f38496c489 schema:name doi
78 schema:value 10.1007/s11071-016-2727-z
79 rdf:type schema:PropertyValue
80 Nc975b5e614cb44a3ad92f38e6a8809da schema:name readcube_id
81 schema:value 16be3eb6d7001563f3ea6b46d3084853443970d51c2e169b74db65cc2de53b19
82 rdf:type schema:PropertyValue
83 Ncbf1f6f3467d4807b3ebac4b4a39e1f0 rdf:first sg:person.015044306153.14
84 rdf:rest N2562d515c86d47bfa40e5bf7dbad89c4
85 Nead4b57223844c8493d3c09915effb2f schema:volumeNumber 85
86 rdf:type schema:PublicationVolume
87 Nfb376dba11ce4d7bbabee162d03ab94d schema:name dimensions_id
88 schema:value pub.1004773074
89 rdf:type schema:PropertyValue
90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
94 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
95 rdf:type schema:DefinedTerm
96 sg:journal.1040905 schema:issn 0924-090X
97 1573-269X
98 schema:name Nonlinear Dynamics
99 rdf:type schema:Periodical
100 sg:person.013477200361.99 schema:affiliation https://www.grid.ac/institutes/grid.8532.c
101 schema:familyName Lazo
102 schema:givenName M. J.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013477200361.99
104 rdf:type schema:Person
105 sg:person.015044306153.14 schema:affiliation https://www.grid.ac/institutes/grid.442758.8
106 schema:familyName Frederico
107 schema:givenName G. S. F.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015044306153.14
109 rdf:type schema:Person
110 sg:pub.10.1007/978-1-4020-6042-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019431047
111 https://doi.org/10.1007/978-1-4020-6042-7
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf02820620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030509226
114 https://doi.org/10.1007/bf02820620
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/jhep03(2010)120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045247020
117 https://doi.org/10.1007/jhep03(2010)120
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10582-006-0406-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020858659
120 https://doi.org/10.1007/s10582-006-0406-x
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10773-011-1010-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005127957
123 https://doi.org/10.1007/s10773-011-1010-9
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10957-012-0203-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011487204
126 https://doi.org/10.1007/s10957-012-0203-6
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11071-007-9309-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025672135
129 https://doi.org/10.1007/s11071-007-9309-z
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11071-014-1378-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034411112
132 https://doi.org/10.1007/s11071-014-1378-1
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11071-015-2005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027328591
135 https://doi.org/10.1007/s11071-015-2005-5
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11071-015-2042-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009951060
138 https://doi.org/10.1007/s11071-015-2042-0
139 rdf:type schema:CreativeWork
140 sg:pub.10.1023/a:1016547232119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037288508
141 https://doi.org/10.1023/a:1016547232119
142 rdf:type schema:CreativeWork
143 sg:pub.10.2478/s13540-013-0030-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045431514
144 https://doi.org/10.2478/s13540-013-0030-y
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.amc.2010.01.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051614486
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.chaos.2011.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040455164
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.cnsns.2010.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030283292
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.cnsns.2010.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009736246
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.cnsns.2012.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038959752
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jmaa.2007.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046088438
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.na.2011.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001851059
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.physleta.2008.01.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018482323
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.physleta.2008.06.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041735172
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.physleta.2011.08.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044287932
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0022-247x(02)00180-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008278786
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0370-1573(00)00070-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042976136
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0375-9601(00)00201-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011372923
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.1769611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023807898
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.2483292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021842963
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.4903991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038554417
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.17.5.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011743867
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/00036810701584583 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033307470
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/00207177308932544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051326613
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1088/1751-8113/40/24/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024751205
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1088/1751-8113/43/5/055203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013251203
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physreve.55.3581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060720611
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physreve.66.056108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005856750
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physreve.75.037201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020545523
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.82.1136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019104709
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1142/8072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098841454
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1142/p871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098933244
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1142/s0217732306020974 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062913842
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1155/s1110757x02110102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017937459
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1238/physica.regular.064a00020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064437661
205 rdf:type schema:CreativeWork
206 https://doi.org/10.3166/ejc.8.56-63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071064664
207 rdf:type schema:CreativeWork
208 https://doi.org/10.3934/jimo.2014.10.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071740181
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.442758.8 schema:alternateName University of Cape Verde
211 schema:name Department of Mathematics, Federal University of Santa Catarina, Florianópilis, SC, Brazil
212 Department of Science and Technology, University of Cape Verde, Praia, Santiago, Cabo Verde
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.8532.c schema:alternateName Federal University of Rio Grande do Sul
215 schema:name Institute of Mathematics, Statistics and Physics, Federal University of Rio Grande, Rio Grande, RS, Brazil
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...