Adaptive synchronization of fractional-order memristor-based neural networks with time delay View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-11

AUTHORS

Haibo Bao, Ju H. Park, Jinde Cao

ABSTRACT

This paper is concerned with the adaptive synchronization problem of fractional-order memristor-based neural networks with time delay. By combining the adaptive control, linear delay feedback control, and a fractional-order inequality, sufficient conditions are derived which ensure the drive–response systems to achieve synchronization. Finally, two numerical examples are given to demonstrate the effectiveness of the obtained results. More... »

PAGES

1343-1354

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-015-2242-7

DOI

http://dx.doi.org/10.1007/s11071-015-2242-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018648635


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "School of Mathematics and Statistics, Southwest University, 400715, Chongqing, China", 
            "Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bao", 
        "givenName": "Haibo", 
        "id": "sg:person.013142020167.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142020167.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju H.", 
        "id": "sg:person.07705373347.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King Abdulaziz University", 
          "id": "https://www.grid.ac/institutes/grid.412125.1", 
          "name": [
            "Department of Mathematics, Southeast University, 210096, Nanjing, China", 
            "Department of Mathematics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Jinde", 
        "id": "sg:person.01262551422.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262551422.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neucom.2009.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003066471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1003110623", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-7793-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003110623", 
          "https://doi.org/10.1007/978-94-015-7793-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-7793-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003110623", 
          "https://doi.org/10.1007/978-94-015-7793-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2011.07.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005903343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2012.723055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005993158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2007.07.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010686486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2013.10.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011475784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-007-9303-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011517353", 
          "https://doi.org/10.1007/s11071-007-9303-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1628-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013107926", 
          "https://doi.org/10.1007/s11071-014-1628-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2014.08.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014842643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.na.2008.02.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015358520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2012.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017377478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2012.06.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017596963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/cjp-2013-0671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019200835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020426202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2014.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021345800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2009.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025798975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2013.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028115554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2013.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028579858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cplx.21547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029116966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2013.09.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029526760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/453042a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029891057", 
          "https://doi.org/10.1038/453042a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2009.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030209418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2015.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038770399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041403683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1375-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045138684", 
          "https://doi.org/10.1007/s11071-014-1375-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.03.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046043255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2014.07.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049303700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2010.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050823399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2009.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052499001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052714473", 
          "https://doi.org/10.1038/nature06932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3068350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057908228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3071933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057909478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4733316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058054545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tct.1971.1083337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2013.2264106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2013.2280556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2007.914705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2009.2023509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/070679090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062850810"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "This paper is concerned with the adaptive synchronization problem of fractional-order memristor-based neural networks with time delay. By combining the adaptive control, linear delay feedback control, and a fractional-order inequality, sufficient conditions are derived which ensure the drive\u2013response systems to achieve synchronization. Finally, two numerical examples are given to demonstrate the effectiveness of the obtained results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-015-2242-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6998298", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7480920", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "82"
      }
    ], 
    "name": "Adaptive synchronization of fractional-order memristor-based neural networks with time delay", 
    "pagination": "1343-1354", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58da697b23a1fd79f9d1dcddfc14ab1223eb29eb1ac2af318b3e4fdfd365fe90"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-015-2242-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018648635"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-015-2242-7", 
      "https://app.dimensions.ai/details/publication/pub.1018648635"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11071-015-2242-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-015-2242-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-015-2242-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-015-2242-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-015-2242-7'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      68 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-015-2242-7 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nda7cc7e057df434dafc7149f486d2bd6
4 schema:citation sg:pub.10.1007/978-94-015-7793-9
5 sg:pub.10.1007/s11071-007-9303-5
6 sg:pub.10.1007/s11071-014-1375-4
7 sg:pub.10.1007/s11071-014-1628-2
8 sg:pub.10.1038/453042a
9 sg:pub.10.1038/nature06932
10 https://app.dimensions.ai/details/publication/pub.1003110623
11 https://doi.org/10.1002/cplx.21547
12 https://doi.org/10.1016/j.automatica.2010.04.005
13 https://doi.org/10.1016/j.cnsns.2013.09.021
14 https://doi.org/10.1016/j.ins.2011.07.044
15 https://doi.org/10.1016/j.na.2008.02.111
16 https://doi.org/10.1016/j.neucom.2009.02.011
17 https://doi.org/10.1016/j.neucom.2010.11.006
18 https://doi.org/10.1016/j.neucom.2012.01.011
19 https://doi.org/10.1016/j.neucom.2014.03.042
20 https://doi.org/10.1016/j.neucom.2014.07.060
21 https://doi.org/10.1016/j.neunet.2013.10.001
22 https://doi.org/10.1016/j.neunet.2013.10.002
23 https://doi.org/10.1016/j.neunet.2013.11.016
24 https://doi.org/10.1016/j.neunet.2014.03.009
25 https://doi.org/10.1016/j.neunet.2014.08.015
26 https://doi.org/10.1016/j.neunet.2015.02.007
27 https://doi.org/10.1016/j.nonrwa.2009.03.020
28 https://doi.org/10.1016/j.nonrwa.2009.11.003
29 https://doi.org/10.1016/j.physa.2006.09.020
30 https://doi.org/10.1016/j.physa.2012.06.050
31 https://doi.org/10.1016/j.physleta.2007.07.050
32 https://doi.org/10.1016/j.physleta.2009.07.013
33 https://doi.org/10.1063/1.3068350
34 https://doi.org/10.1063/1.3071933
35 https://doi.org/10.1063/1.4733316
36 https://doi.org/10.1080/00207721.2012.723055
37 https://doi.org/10.1103/physrevlett.64.821
38 https://doi.org/10.1109/tct.1971.1083337
39 https://doi.org/10.1109/tnnls.2013.2264106
40 https://doi.org/10.1109/tnnls.2013.2280556
41 https://doi.org/10.1109/tsmcb.2007.914705
42 https://doi.org/10.1109/tsmcb.2009.2023509
43 https://doi.org/10.1137/070679090
44 https://doi.org/10.1139/cjp-2013-0671
45 schema:datePublished 2015-11
46 schema:datePublishedReg 2015-11-01
47 schema:description This paper is concerned with the adaptive synchronization problem of fractional-order memristor-based neural networks with time delay. By combining the adaptive control, linear delay feedback control, and a fractional-order inequality, sufficient conditions are derived which ensure the drive–response systems to achieve synchronization. Finally, two numerical examples are given to demonstrate the effectiveness of the obtained results.
48 schema:genre research_article
49 schema:inLanguage en
50 schema:isAccessibleForFree false
51 schema:isPartOf N68e75a8d384a4e0890304223a1984180
52 N8c7fe8c28465459e8a1d46ebe902f013
53 sg:journal.1040905
54 schema:name Adaptive synchronization of fractional-order memristor-based neural networks with time delay
55 schema:pagination 1343-1354
56 schema:productId N1ca0dbd970e44a67affdb27731b34258
57 N496d54602947476488f0cba539d7cbed
58 N62d1883aa49c4f93a213163bc8218309
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018648635
60 https://doi.org/10.1007/s11071-015-2242-7
61 schema:sdDatePublished 2019-04-10T19:57
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nf2cfae8b3a104b15b1913c0300fc9fe2
64 schema:url http://link.springer.com/10.1007%2Fs11071-015-2242-7
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N10d486293eb642f0849c7768553ddcf1 rdf:first sg:person.07705373347.23
69 rdf:rest N769368770bfc4847ab1fd25c8bdc3f5d
70 N1ca0dbd970e44a67affdb27731b34258 schema:name readcube_id
71 schema:value 58da697b23a1fd79f9d1dcddfc14ab1223eb29eb1ac2af318b3e4fdfd365fe90
72 rdf:type schema:PropertyValue
73 N496d54602947476488f0cba539d7cbed schema:name dimensions_id
74 schema:value pub.1018648635
75 rdf:type schema:PropertyValue
76 N62d1883aa49c4f93a213163bc8218309 schema:name doi
77 schema:value 10.1007/s11071-015-2242-7
78 rdf:type schema:PropertyValue
79 N68e75a8d384a4e0890304223a1984180 schema:issueNumber 3
80 rdf:type schema:PublicationIssue
81 N769368770bfc4847ab1fd25c8bdc3f5d rdf:first sg:person.01262551422.69
82 rdf:rest rdf:nil
83 N8c7fe8c28465459e8a1d46ebe902f013 schema:volumeNumber 82
84 rdf:type schema:PublicationVolume
85 Nda7cc7e057df434dafc7149f486d2bd6 rdf:first sg:person.013142020167.75
86 rdf:rest N10d486293eb642f0849c7768553ddcf1
87 Nf2cfae8b3a104b15b1913c0300fc9fe2 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
93 schema:name Applied Mathematics
94 rdf:type schema:DefinedTerm
95 sg:grant.6998298 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-015-2242-7
96 rdf:type schema:MonetaryGrant
97 sg:grant.7480920 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-015-2242-7
98 rdf:type schema:MonetaryGrant
99 sg:journal.1040905 schema:issn 0924-090X
100 1573-269X
101 schema:name Nonlinear Dynamics
102 rdf:type schema:Periodical
103 sg:person.01262551422.69 schema:affiliation https://www.grid.ac/institutes/grid.412125.1
104 schema:familyName Cao
105 schema:givenName Jinde
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262551422.69
107 rdf:type schema:Person
108 sg:person.013142020167.75 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
109 schema:familyName Bao
110 schema:givenName Haibo
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013142020167.75
112 rdf:type schema:Person
113 sg:person.07705373347.23 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
114 schema:familyName Park
115 schema:givenName Ju H.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23
117 rdf:type schema:Person
118 sg:pub.10.1007/978-94-015-7793-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003110623
119 https://doi.org/10.1007/978-94-015-7793-9
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11071-007-9303-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011517353
122 https://doi.org/10.1007/s11071-007-9303-5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11071-014-1375-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045138684
125 https://doi.org/10.1007/s11071-014-1375-4
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11071-014-1628-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013107926
128 https://doi.org/10.1007/s11071-014-1628-2
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/453042a schema:sameAs https://app.dimensions.ai/details/publication/pub.1029891057
131 https://doi.org/10.1038/453042a
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nature06932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052714473
134 https://doi.org/10.1038/nature06932
135 rdf:type schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1003110623 schema:CreativeWork
137 https://doi.org/10.1002/cplx.21547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029116966
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.automatica.2010.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050823399
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.cnsns.2013.09.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029526760
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.ins.2011.07.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005903343
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.na.2008.02.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015358520
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.neucom.2009.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003066471
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.neucom.2010.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041403683
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.neucom.2012.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017377478
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.neucom.2014.03.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046043255
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.neucom.2014.07.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049303700
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.neunet.2013.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011475784
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.neunet.2013.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028115554
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.neunet.2013.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028579858
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.neunet.2014.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021345800
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.neunet.2014.08.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014842643
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.neunet.2015.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038770399
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.nonrwa.2009.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030209418
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.nonrwa.2009.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025798975
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.physa.2006.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020426202
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.physa.2012.06.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017596963
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.physleta.2007.07.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010686486
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.physleta.2009.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052499001
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1063/1.3068350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057908228
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1063/1.3071933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057909478
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1063/1.4733316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058054545
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1080/00207721.2012.723055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005993158
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physrevlett.64.821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800981
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tct.1971.1083337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579020
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tnnls.2013.2264106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718335
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tnnls.2013.2280556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718408
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/tsmcb.2007.914705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796847
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/tsmcb.2009.2023509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797094
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1137/070679090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062850810
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1139/cjp-2013-0671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019200835
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.412125.1 schema:alternateName King Abdulaziz University
206 schema:name Department of Mathematics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
207 Department of Mathematics, Southeast University, 210096, Nanjing, China
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
210 schema:name Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, 38541, Kyongsan, Republic of Korea
211 School of Mathematics and Statistics, Southwest University, 400715, Chongqing, China
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...