On the general theory of chaotic dynamics of flexible curvilinear Euler–Bernoulli beams View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-08-23

AUTHORS

J. Awrejcewicz, A. V. Krysko, N. A. Zagniboroda, V. V. Dobriyan, V. A. Krysko

ABSTRACT

We present chaotic dynamics of flexible curvilinear shallow Euler–Bernoulli beams. The continuous problem is reduced to the Cauchy problem by the finite-difference method of the second-order accuracy and finite element method (FEM). The Cauchy problem is solved through the fourth- and sixth-order Runge–Kutta methods with respect to time. This preserves reliability of the obtained results. Nonlinear dynamics is investigated with the help of a qualitative theory of differential equations. Frequency power spectra using fast Fourier transform, phase and modal portraits, autocorrelation functions, spatiotemporal dynamics of the beam, 2D and 3D Morlet wavelets, and Poincaré sections are constructed. Four first Lyapunov exponents are estimated using the Wolf algorithm. Transitions from regular to chaotic dynamics are detected, illustrated and discussed. Depending on signs of four Lyapunov exponents the chaotic, hyper chaotic, hyper-hyper chaotic, and deep chaotic dynamics is reported. Curvilinear beams are treated as systems with an infinite number of degrees of freedom. Charts of vibration character, elastic–plastic deformations, and stability loss zone versus control parameters of the studied beams are reported. More... »

PAGES

11-29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-014-1641-5

DOI

http://dx.doi.org/10.1007/s11071-014-1641-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013197096


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Vehicles, Warsaw University of Technology, 84 Narbutta St., 02-524, Warsaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.1035.7", 
          "name": [
            "Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland", 
            "Department of Vehicles, Warsaw University of Technology, 84 Narbutta St., 02-524, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Awrejcewicz", 
        "givenName": "J.", 
        "id": "sg:person.012103132446.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "A. V.", 
        "id": "sg:person.016017316223.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zagniboroda", 
        "givenName": "N. A.", 
        "id": "sg:person.01353451260.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353451260.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dobriyan", 
        "givenName": "V. V.", 
        "id": "sg:person.0630045160.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630045160.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krysko", 
        "givenName": "V. A.", 
        "id": "sg:person.015167266033.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1026433909962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023734914", 
          "https://doi.org/10.1023/a:1026433909962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004190050110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033731798", 
          "https://doi.org/10.1007/s004190050110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-007-9205-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008141417", 
          "https://doi.org/10.1007/s11071-007-9205-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08-23", 
    "datePublishedReg": "2014-08-23", 
    "description": "We present chaotic dynamics of flexible curvilinear shallow Euler\u2013Bernoulli beams. The continuous problem is reduced to the Cauchy problem by the finite-difference method of the second-order accuracy and finite element method (FEM). The Cauchy problem is solved through the fourth- and sixth-order Runge\u2013Kutta methods with respect to time. This preserves reliability of the obtained results. Nonlinear dynamics is investigated with the help of a qualitative theory of differential equations. Frequency power spectra using fast Fourier transform, phase and modal portraits, autocorrelation functions, spatiotemporal dynamics of the beam, 2D and 3D Morlet wavelets, and Poincar\u00e9 sections are constructed. Four first Lyapunov exponents are estimated using the Wolf algorithm. Transitions from regular to chaotic dynamics are detected, illustrated and discussed. Depending on signs of four Lyapunov exponents the chaotic, hyper chaotic, hyper-hyper chaotic, and deep chaotic dynamics is reported. Curvilinear beams are treated as systems with an infinite number of degrees of freedom. Charts of vibration character, elastic\u2013plastic deformations, and stability loss zone versus control parameters of the studied beams are reported.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11071-014-1641-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "79"
      }
    ], 
    "keywords": [
      "chaotic dynamics", 
      "Cauchy problem", 
      "Euler\u2013Bernoulli beam", 
      "sixth-order Runge\u2013Kutta method", 
      "Lyapunov exponents", 
      "finite element method", 
      "Runge-Kutta method", 
      "second-order accuracy", 
      "finite-difference method", 
      "first Lyapunov exponent", 
      "differential equations", 
      "modal portraits", 
      "qualitative theory", 
      "continuous problem", 
      "nonlinear dynamics", 
      "Poincar\u00e9 sections", 
      "infinite number", 
      "curvilinear beams", 
      "control parameters", 
      "general theory", 
      "fast Fourier transform", 
      "wolf algorithm", 
      "element method", 
      "autocorrelation function", 
      "vibration character", 
      "frequency power spectrum", 
      "dynamics", 
      "problem", 
      "exponent", 
      "power spectrum", 
      "theory", 
      "spatiotemporal dynamics", 
      "equations", 
      "algorithm", 
      "Morlet wavelet", 
      "wavelets", 
      "accuracy", 
      "freedom", 
      "portrait", 
      "parameters", 
      "reliability", 
      "system", 
      "function", 
      "transform", 
      "Fourier transform", 
      "help", 
      "respect", 
      "loss zone", 
      "number", 
      "results", 
      "charts", 
      "beam", 
      "time", 
      "degree", 
      "deformation", 
      "elastic-plastic deformation", 
      "character", 
      "transition", 
      "sections", 
      "spectra", 
      "hyper", 
      "phase", 
      "zone", 
      "signs", 
      "method", 
      "present chaotic dynamics", 
      "flexible curvilinear shallow Euler\u2013Bernoulli beams", 
      "curvilinear shallow Euler\u2013Bernoulli beams", 
      "shallow Euler\u2013Bernoulli beams", 
      "preserves reliability", 
      "deep chaotic dynamics", 
      "stability loss zone", 
      "flexible curvilinear Euler\u2013Bernoulli beams", 
      "curvilinear Euler\u2013Bernoulli beams"
    ], 
    "name": "On the general theory of chaotic dynamics of flexible curvilinear Euler\u2013Bernoulli beams", 
    "pagination": "11-29", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013197096"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-014-1641-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-014-1641-5", 
      "https://app.dimensions.ai/details/publication/pub.1013197096"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_621.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11071-014-1641-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-014-1641-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-014-1641-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-014-1641-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-014-1641-5'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      22 PREDICATES      102 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-014-1641-5 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2a56e5f2c01944868bcf158ebfd77e5b
4 schema:citation sg:pub.10.1007/s004190050110
5 sg:pub.10.1007/s11071-007-9205-6
6 sg:pub.10.1023/a:1026433909962
7 schema:datePublished 2014-08-23
8 schema:datePublishedReg 2014-08-23
9 schema:description We present chaotic dynamics of flexible curvilinear shallow Euler–Bernoulli beams. The continuous problem is reduced to the Cauchy problem by the finite-difference method of the second-order accuracy and finite element method (FEM). The Cauchy problem is solved through the fourth- and sixth-order Runge–Kutta methods with respect to time. This preserves reliability of the obtained results. Nonlinear dynamics is investigated with the help of a qualitative theory of differential equations. Frequency power spectra using fast Fourier transform, phase and modal portraits, autocorrelation functions, spatiotemporal dynamics of the beam, 2D and 3D Morlet wavelets, and Poincaré sections are constructed. Four first Lyapunov exponents are estimated using the Wolf algorithm. Transitions from regular to chaotic dynamics are detected, illustrated and discussed. Depending on signs of four Lyapunov exponents the chaotic, hyper chaotic, hyper-hyper chaotic, and deep chaotic dynamics is reported. Curvilinear beams are treated as systems with an infinite number of degrees of freedom. Charts of vibration character, elastic–plastic deformations, and stability loss zone versus control parameters of the studied beams are reported.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N4d317b65af214fe6b932550cef53bab4
14 Nc6297000d6c84c56acffbe0d29c560f8
15 sg:journal.1040905
16 schema:keywords Cauchy problem
17 Euler–Bernoulli beam
18 Fourier transform
19 Lyapunov exponents
20 Morlet wavelet
21 Poincaré sections
22 Runge-Kutta method
23 accuracy
24 algorithm
25 autocorrelation function
26 beam
27 chaotic dynamics
28 character
29 charts
30 continuous problem
31 control parameters
32 curvilinear Euler–Bernoulli beams
33 curvilinear beams
34 curvilinear shallow Euler–Bernoulli beams
35 deep chaotic dynamics
36 deformation
37 degree
38 differential equations
39 dynamics
40 elastic-plastic deformation
41 element method
42 equations
43 exponent
44 fast Fourier transform
45 finite element method
46 finite-difference method
47 first Lyapunov exponent
48 flexible curvilinear Euler–Bernoulli beams
49 flexible curvilinear shallow Euler–Bernoulli beams
50 freedom
51 frequency power spectrum
52 function
53 general theory
54 help
55 hyper
56 infinite number
57 loss zone
58 method
59 modal portraits
60 nonlinear dynamics
61 number
62 parameters
63 phase
64 portrait
65 power spectrum
66 present chaotic dynamics
67 preserves reliability
68 problem
69 qualitative theory
70 reliability
71 respect
72 results
73 second-order accuracy
74 sections
75 shallow Euler–Bernoulli beams
76 signs
77 sixth-order Runge–Kutta method
78 spatiotemporal dynamics
79 spectra
80 stability loss zone
81 system
82 theory
83 time
84 transform
85 transition
86 vibration character
87 wavelets
88 wolf algorithm
89 zone
90 schema:name On the general theory of chaotic dynamics of flexible curvilinear Euler–Bernoulli beams
91 schema:pagination 11-29
92 schema:productId N1c1a9d6fd84f4d158f9334833473d6ed
93 Ne4dd829e0c694d92ae5274e7227f4f00
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013197096
95 https://doi.org/10.1007/s11071-014-1641-5
96 schema:sdDatePublished 2021-11-01T18:22
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N07e1a0ed91324c31b3c0436a573a067d
99 schema:url https://doi.org/10.1007/s11071-014-1641-5
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N07e1a0ed91324c31b3c0436a573a067d schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 N0cdb82e07e7f44d2bbd2940f351f3185 rdf:first sg:person.0630045160.08
106 rdf:rest N6d9cd6b49fe64ea189898281b4057408
107 N1c1a9d6fd84f4d158f9334833473d6ed schema:name dimensions_id
108 schema:value pub.1013197096
109 rdf:type schema:PropertyValue
110 N2a56e5f2c01944868bcf158ebfd77e5b rdf:first sg:person.012103132446.89
111 rdf:rest Nc8b1125469bb47dcaa847b36083b616d
112 N4d317b65af214fe6b932550cef53bab4 schema:issueNumber 1
113 rdf:type schema:PublicationIssue
114 N5b7e7bd2d3304685972b7862a4f3fd06 rdf:first sg:person.01353451260.42
115 rdf:rest N0cdb82e07e7f44d2bbd2940f351f3185
116 N6d9cd6b49fe64ea189898281b4057408 rdf:first sg:person.015167266033.92
117 rdf:rest rdf:nil
118 Nc6297000d6c84c56acffbe0d29c560f8 schema:volumeNumber 79
119 rdf:type schema:PublicationVolume
120 Nc8b1125469bb47dcaa847b36083b616d rdf:first sg:person.016017316223.58
121 rdf:rest N5b7e7bd2d3304685972b7862a4f3fd06
122 Ne4dd829e0c694d92ae5274e7227f4f00 schema:name doi
123 schema:value 10.1007/s11071-014-1641-5
124 rdf:type schema:PropertyValue
125 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
126 schema:name Mathematical Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
129 schema:name Pure Mathematics
130 rdf:type schema:DefinedTerm
131 sg:journal.1040905 schema:issn 0924-090X
132 1573-269X
133 schema:name Nonlinear Dynamics
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.012103132446.89 schema:affiliation grid-institutes:grid.1035.7
137 schema:familyName Awrejcewicz
138 schema:givenName J.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012103132446.89
140 rdf:type schema:Person
141 sg:person.01353451260.42 schema:affiliation grid-institutes:grid.78837.33
142 schema:familyName Zagniboroda
143 schema:givenName N. A.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353451260.42
145 rdf:type schema:Person
146 sg:person.015167266033.92 schema:affiliation grid-institutes:grid.78837.33
147 schema:familyName Krysko
148 schema:givenName V. A.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015167266033.92
150 rdf:type schema:Person
151 sg:person.016017316223.58 schema:affiliation grid-institutes:grid.78837.33
152 schema:familyName Krysko
153 schema:givenName A. V.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016017316223.58
155 rdf:type schema:Person
156 sg:person.0630045160.08 schema:affiliation grid-institutes:grid.78837.33
157 schema:familyName Dobriyan
158 schema:givenName V. V.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630045160.08
160 rdf:type schema:Person
161 sg:pub.10.1007/s004190050110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033731798
162 https://doi.org/10.1007/s004190050110
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s11071-007-9205-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008141417
165 https://doi.org/10.1007/s11071-007-9205-6
166 rdf:type schema:CreativeWork
167 sg:pub.10.1023/a:1026433909962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023734914
168 https://doi.org/10.1023/a:1026433909962
169 rdf:type schema:CreativeWork
170 grid-institutes:grid.1035.7 schema:alternateName Department of Vehicles, Warsaw University of Technology, 84 Narbutta St., 02-524, Warsaw, Poland
171 schema:name Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 1/15 Stefanowski St., 90-924, Lodz, Poland
172 Department of Vehicles, Warsaw University of Technology, 84 Narbutta St., 02-524, Warsaw, Poland
173 rdf:type schema:Organization
174 grid-institutes:grid.78837.33 schema:alternateName Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia
175 Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia
176 schema:name Department of Applied Mathematics and Systems Analysis, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia
177 Department of Mathematics and Modeling, Saratov State Technical University, Politehnicheskaya 77, 410054, Saratov, Russia
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...