Dynamic load-carrying capacity of a novel redundantly actuated parallel conveyor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-10

AUTHORS

Jun Wu, Xiaolei Chen, Liping Wang, Xinjun Liu

ABSTRACT

Conveyors are important equipment in the painting shop. Conveyors with cantilever beams have low load-carrying capacity and can carry small cars. To solve this problem, this paper presents a novel conveyor that uses redundantly actuated parallel manipulators. A method is proposed to obtain the maximum dynamic load-carrying capacity of the conveyor by optimizing the internal forces of the redundantly actuated parallel manipulators. To improve the dynamic load-carrying capacity, approaches using counterweights are utilized and compared. Furthermore, the maximum dynamic load-carrying capacity of the redundant parallel manipulator is compared with that of its nonredundant counterpart. More... »

PAGES

241-250

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-014-1436-8

DOI

http://dx.doi.org/10.1007/s11071-014-1436-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042973445


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Tribology and Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China", 
            "Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jun", 
        "id": "sg:person.012616773005.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012616773005.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Tribology and Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China", 
            "Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xiaolei", 
        "id": "sg:person.012615474607.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615474607.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Tribology and Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China", 
            "Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Liping", 
        "id": "sg:person.014634022051.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634022051.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "State Key Laboratory of Tribology and Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China", 
            "Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, 100084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xinjun", 
        "id": "sg:person.013661226265.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013661226265.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.rcim.2010.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002449603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11044-005-4068-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014261620", 
          "https://doi.org/10.1007/s11044-005-4068-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechmachtheory.2008.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017491987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-009-9473-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021240397", 
          "https://doi.org/10.1007/s11071-009-9473-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.robot.2013.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023551503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/01439911211227971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033396099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-013-0960-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034977987", 
          "https://doi.org/10.1007/s11071-013-0960-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9682-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040871720", 
          "https://doi.org/10.1007/s11071-010-9682-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9682-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040871720", 
          "https://doi.org/10.1007/s11071-010-9682-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11044-007-9081-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045747720", 
          "https://doi.org/10.1007/s11044-007-9081-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mechmachtheory.2012.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051445655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/70.285588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061216077"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-10", 
    "datePublishedReg": "2014-10-01", 
    "description": "Conveyors are important equipment in the painting shop. Conveyors with cantilever beams have low load-carrying capacity and can carry small cars. To solve this problem, this paper presents a novel conveyor that uses redundantly actuated parallel manipulators. A method is proposed to obtain the maximum dynamic load-carrying capacity of the conveyor by optimizing the internal forces of the redundantly actuated parallel manipulators. To improve the dynamic load-carrying capacity, approaches using counterweights are utilized and compared. Furthermore, the maximum dynamic load-carrying capacity of the redundant parallel manipulator is compared with that of its nonredundant counterpart.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-014-1436-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7198201", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7009828", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "name": "Dynamic load-carrying capacity of a novel redundantly actuated parallel conveyor", 
    "pagination": "241-250", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ccb269088736150233f0955b9fea1cb75c14ef917f9a85fb8b5355991e6554af"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-014-1436-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042973445"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-014-1436-8", 
      "https://app.dimensions.ai/details/publication/pub.1042973445"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11071-014-1436-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-014-1436-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-014-1436-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-014-1436-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-014-1436-8'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-014-1436-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N7a4571d11456487b8663c01c14a8a87e
4 schema:citation sg:pub.10.1007/s11044-005-4068-4
5 sg:pub.10.1007/s11044-007-9081-3
6 sg:pub.10.1007/s11071-009-9473-4
7 sg:pub.10.1007/s11071-010-9682-x
8 sg:pub.10.1007/s11071-013-0960-2
9 https://doi.org/10.1016/j.mechmachtheory.2008.04.002
10 https://doi.org/10.1016/j.mechmachtheory.2012.03.002
11 https://doi.org/10.1016/j.rcim.2010.06.012
12 https://doi.org/10.1016/j.robot.2013.03.001
13 https://doi.org/10.1108/01439911211227971
14 https://doi.org/10.1109/70.285588
15 schema:datePublished 2014-10
16 schema:datePublishedReg 2014-10-01
17 schema:description Conveyors are important equipment in the painting shop. Conveyors with cantilever beams have low load-carrying capacity and can carry small cars. To solve this problem, this paper presents a novel conveyor that uses redundantly actuated parallel manipulators. A method is proposed to obtain the maximum dynamic load-carrying capacity of the conveyor by optimizing the internal forces of the redundantly actuated parallel manipulators. To improve the dynamic load-carrying capacity, approaches using counterweights are utilized and compared. Furthermore, the maximum dynamic load-carrying capacity of the redundant parallel manipulator is compared with that of its nonredundant counterpart.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N54b47e5115a044f8aa92252d90ac6813
22 Nda1688f7d77e48209a9f24a591f3acc1
23 sg:journal.1040905
24 schema:name Dynamic load-carrying capacity of a novel redundantly actuated parallel conveyor
25 schema:pagination 241-250
26 schema:productId N68abba71308447f18b1bde6742fd83c7
27 N9d50afc3b14648518f728bad0e297390
28 Nc6018b4024064a7c9f04c4c9d4f7c29b
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042973445
30 https://doi.org/10.1007/s11071-014-1436-8
31 schema:sdDatePublished 2019-04-10T19:58
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher Nb86e7c5e658344db930c8b33ba36e786
34 schema:url http://link.springer.com/10.1007%2Fs11071-014-1436-8
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N54b47e5115a044f8aa92252d90ac6813 schema:volumeNumber 78
39 rdf:type schema:PublicationVolume
40 N68abba71308447f18b1bde6742fd83c7 schema:name dimensions_id
41 schema:value pub.1042973445
42 rdf:type schema:PropertyValue
43 N788f1253f75740cc836252b1b80d1407 rdf:first sg:person.014634022051.65
44 rdf:rest N904c820f280346adb9847e0a6fbf7902
45 N7a4571d11456487b8663c01c14a8a87e rdf:first sg:person.012616773005.95
46 rdf:rest Ne93bc0d812004b3d8bee55bd2b7bb9a3
47 N904c820f280346adb9847e0a6fbf7902 rdf:first sg:person.013661226265.92
48 rdf:rest rdf:nil
49 N9d50afc3b14648518f728bad0e297390 schema:name doi
50 schema:value 10.1007/s11071-014-1436-8
51 rdf:type schema:PropertyValue
52 Nb86e7c5e658344db930c8b33ba36e786 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nc6018b4024064a7c9f04c4c9d4f7c29b schema:name readcube_id
55 schema:value ccb269088736150233f0955b9fea1cb75c14ef917f9a85fb8b5355991e6554af
56 rdf:type schema:PropertyValue
57 Nda1688f7d77e48209a9f24a591f3acc1 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 Ne93bc0d812004b3d8bee55bd2b7bb9a3 rdf:first sg:person.012615474607.47
60 rdf:rest N788f1253f75740cc836252b1b80d1407
61 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
62 schema:name Engineering
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
65 schema:name Materials Engineering
66 rdf:type schema:DefinedTerm
67 sg:grant.7009828 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-014-1436-8
68 rdf:type schema:MonetaryGrant
69 sg:grant.7198201 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-014-1436-8
70 rdf:type schema:MonetaryGrant
71 sg:journal.1040905 schema:issn 0924-090X
72 1573-269X
73 schema:name Nonlinear Dynamics
74 rdf:type schema:Periodical
75 sg:person.012615474607.47 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
76 schema:familyName Chen
77 schema:givenName Xiaolei
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012615474607.47
79 rdf:type schema:Person
80 sg:person.012616773005.95 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
81 schema:familyName Wu
82 schema:givenName Jun
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012616773005.95
84 rdf:type schema:Person
85 sg:person.013661226265.92 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
86 schema:familyName Liu
87 schema:givenName Xinjun
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013661226265.92
89 rdf:type schema:Person
90 sg:person.014634022051.65 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
91 schema:familyName Wang
92 schema:givenName Liping
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634022051.65
94 rdf:type schema:Person
95 sg:pub.10.1007/s11044-005-4068-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014261620
96 https://doi.org/10.1007/s11044-005-4068-4
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s11044-007-9081-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045747720
99 https://doi.org/10.1007/s11044-007-9081-3
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11071-009-9473-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021240397
102 https://doi.org/10.1007/s11071-009-9473-4
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11071-010-9682-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040871720
105 https://doi.org/10.1007/s11071-010-9682-x
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11071-013-0960-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034977987
108 https://doi.org/10.1007/s11071-013-0960-2
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.mechmachtheory.2008.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017491987
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.mechmachtheory.2012.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051445655
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.rcim.2010.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002449603
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.robot.2013.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023551503
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1108/01439911211227971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033396099
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/70.285588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061216077
121 rdf:type schema:CreativeWork
122 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
123 schema:name Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipments and Control, 100084, Beijing, China
124 State Key Laboratory of Tribology and Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, 100084, Beijing, China
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...