Ontology type: schema:ScholarlyArticle
2013-12
AUTHORSR. Sakthivel, K. Mathiyalagan, S. Lakshmanan, Ju H. Park
ABSTRACTIn this paper, we investigate the problem of robust state estimator design for a class of uncertain discrete-time genetic regulatory networks (GRNs) with time varying delays and randomly occurring uncertainties. By introducing a new discretized Lyapunov–Krasovskii functional together with a free-weighting matrix technique, first we derive a set of sufficient conditions for the existence of global asymptotic state estimator for the discrete-time GRN model with time delays satisfying both the lower and the upper bound of the interval time-varying delay. Further, the obtained results are extended to deal the robust state estimator design for the discrete-time GRN model in the presence of randomly occurring uncertainties which obey certain mutually uncorrelated Bernoulli distributed white noise sequences. The proposed criterions are established in terms of linear matrix inequalities (LMIs) which can be easily solved via Matlab LMI toolbox. Finally, the robust state estimator design has been implemented in a gene network model to illustrate the applicability and usefulness of the obtained theory. More... »
PAGES1297-1315
http://scigraph.springernature.com/pub.10.1007/s11071-013-1041-2
DOIhttp://dx.doi.org/10.1007/s11071-013-1041-2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1001594066
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Sungkyunkwan University",
"id": "https://www.grid.ac/institutes/grid.264381.a",
"name": [
"Department of Mathematics, Sungkyunkwan University, 440 746, Suwon, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Sakthivel",
"givenName": "R.",
"id": "sg:person.01152244155.83",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152244155.83"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Mathematics, Anna University\u2014Regional Centre, 641 047, Coimbatore, India"
],
"type": "Organization"
},
"familyName": "Mathiyalagan",
"givenName": "K.",
"id": "sg:person.01163407314.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163407314.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "United Arab Emirates University",
"id": "https://www.grid.ac/institutes/grid.43519.3a",
"name": [
"Department of Mathematics, Faculty of Science, UAE University, 15551, Al-Ain, UAE"
],
"type": "Organization"
},
"familyName": "Lakshmanan",
"givenName": "S.",
"id": "sg:person.014114021021.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014114021021.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Yeungnam University",
"id": "https://www.grid.ac/institutes/grid.413028.c",
"name": [
"Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 712-749, Dae-dong, Kyongsan, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Park",
"givenName": "Ju H.",
"id": "sg:person.07705373347.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11071-011-0286-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001341964",
"https://doi.org/10.1007/s11071-011-0286-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cnsns.2011.02.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002830602"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.mbs.2010.08.012",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003022295"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-007-9310-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003762732",
"https://doi.org/10.1007/s11071-007-9310-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-009-9623-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004431350",
"https://doi.org/10.1007/s11071-009-9623-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-009-9623-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004431350",
"https://doi.org/10.1007/s11071-009-9623-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.physleta.2009.09.055",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012910099"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cnsns.2010.04.035",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013657839"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/00207720903141434",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018234560"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1139/p2012-088",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019964215"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-011-0278-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024771465",
"https://doi.org/10.1007/s11071-011-0278-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-011-0278-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024771465",
"https://doi.org/10.1007/s11071-011-0278-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/00207721.2010.517870",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030773780"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.nonrwa.2011.03.008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037625409"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2010.03.029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037749475"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1139/p11-147",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038737437"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00500-012-0943-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040573923",
"https://doi.org/10.1007/s00500-012-0943-0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2011.01.018",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044004049"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.fss.2010.10.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049060326"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2009.10.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051567699"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-011-0010-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051594974",
"https://doi.org/10.1007/s11071-011-0010-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00285-005-0359-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051665804",
"https://doi.org/10.1007/s00285-005-0359-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2010.01.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053319803"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1049/iet-cta.2010.0004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056823039"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1049/iet-cta.2010.0004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056823039"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0031-8949/82/05/055009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059002956"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0031-8949/82/05/055009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059002956"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tfuzz.2011.2174244",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061606526"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tie.2011.2168791",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061625283"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnb.2008.2000746",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061713790"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnb.2012.2214231",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061713965"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2007.911748",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717328"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2009.2033599",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717621"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2009.2036610",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717644"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2010.2059039",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717755"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2011.2163203",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061717933"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnnls.2012.2202687",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061718130"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnnls.2012.2232938",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061718213"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmcb.2008.2002812",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061796851"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmcb.2009.2022402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061797092"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmcb.2011.2157140",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061797348"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/117959721000200001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092584030"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1177/117959721000200001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092584030"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-12",
"datePublishedReg": "2013-12-01",
"description": "In this paper, we investigate the problem of robust state estimator design for a class of uncertain discrete-time genetic regulatory networks (GRNs) with time varying delays and randomly occurring uncertainties. By introducing a new discretized Lyapunov\u2013Krasovskii functional together with a free-weighting matrix technique, first we derive a set of sufficient conditions for the existence of global asymptotic state estimator for the discrete-time GRN model with time delays satisfying both the lower and the upper bound of the interval time-varying delay. Further, the obtained results are extended to deal the robust state estimator design for the discrete-time GRN model in the presence of randomly occurring uncertainties which obey certain mutually uncorrelated Bernoulli distributed white noise sequences. The proposed criterions are established in terms of linear matrix inequalities (LMIs) which can be easily solved via Matlab LMI toolbox. Finally, the robust state estimator design has been implemented in a gene network model to illustrate the applicability and usefulness of the obtained theory.",
"genre": "research_article",
"id": "sg:pub.10.1007/s11071-013-1041-2",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7480920",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1040905",
"issn": [
"0924-090X",
"1573-269X"
],
"name": "Nonlinear Dynamics",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "74"
}
],
"name": "Robust state estimation for discrete-time genetic regulatory networks with randomly occurring uncertainties",
"pagination": "1297-1315",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"0797f3bdab981f3298c5994bb9eb0dfc6f005ab3bb062d33f15d33fe8a51e52a"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11071-013-1041-2"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1001594066"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11071-013-1041-2",
"https://app.dimensions.ai/details/publication/pub.1001594066"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T22:31",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000509.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs11071-013-1041-2"
}
]
Download the RDF metadata as:Â json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-1041-2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-1041-2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-1041-2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-1041-2'
This table displays all metadata directly associated to this object as RDF triples.
213 TRIPLES
21 PREDICATES
65 URIs
19 LITERALS
7 BLANK NODES