Robust state estimation for discrete-time genetic regulatory networks with randomly occurring uncertainties View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12

AUTHORS

R. Sakthivel, K. Mathiyalagan, S. Lakshmanan, Ju H. Park

ABSTRACT

In this paper, we investigate the problem of robust state estimator design for a class of uncertain discrete-time genetic regulatory networks (GRNs) with time varying delays and randomly occurring uncertainties. By introducing a new discretized Lyapunov–Krasovskii functional together with a free-weighting matrix technique, first we derive a set of sufficient conditions for the existence of global asymptotic state estimator for the discrete-time GRN model with time delays satisfying both the lower and the upper bound of the interval time-varying delay. Further, the obtained results are extended to deal the robust state estimator design for the discrete-time GRN model in the presence of randomly occurring uncertainties which obey certain mutually uncorrelated Bernoulli distributed white noise sequences. The proposed criterions are established in terms of linear matrix inequalities (LMIs) which can be easily solved via Matlab LMI toolbox. Finally, the robust state estimator design has been implemented in a gene network model to illustrate the applicability and usefulness of the obtained theory. More... »

PAGES

1297-1315

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-013-1041-2

DOI

http://dx.doi.org/10.1007/s11071-013-1041-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001594066


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Department of Mathematics, Sungkyunkwan University, 440 746, Suwon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sakthivel", 
        "givenName": "R.", 
        "id": "sg:person.01152244155.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152244155.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Anna University\u2014Regional Centre, 641 047, Coimbatore, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathiyalagan", 
        "givenName": "K.", 
        "id": "sg:person.01163407314.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163407314.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United Arab Emirates University", 
          "id": "https://www.grid.ac/institutes/grid.43519.3a", 
          "name": [
            "Department of Mathematics, Faculty of Science, UAE University, 15551, Al-Ain, UAE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lakshmanan", 
        "givenName": "S.", 
        "id": "sg:person.014114021021.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014114021021.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 712-749, Dae-dong, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju H.", 
        "id": "sg:person.07705373347.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11071-011-0286-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001341964", 
          "https://doi.org/10.1007/s11071-011-0286-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2011.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002830602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mbs.2010.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003022295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-007-9310-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003762732", 
          "https://doi.org/10.1007/s11071-007-9310-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-009-9623-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004431350", 
          "https://doi.org/10.1007/s11071-009-9623-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-009-9623-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004431350", 
          "https://doi.org/10.1007/s11071-009-9623-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2009.09.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012910099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2010.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013657839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207720903141434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018234560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/p2012-088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019964215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0278-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024771465", 
          "https://doi.org/10.1007/s11071-011-0278-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0278-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024771465", 
          "https://doi.org/10.1007/s11071-011-0278-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207721.2010.517870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030773780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2011.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037625409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037749475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/p11-147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038737437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-012-0943-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040573923", 
          "https://doi.org/10.1007/s00500-012-0943-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2011.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044004049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fss.2010.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049060326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2009.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051567699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0010-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051594974", 
          "https://doi.org/10.1007/s11071-011-0010-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00285-005-0359-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051665804", 
          "https://doi.org/10.1007/s00285-005-0359-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.01.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053319803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2010.0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2010.0004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056823039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/82/05/055009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059002956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0031-8949/82/05/055009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059002956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2011.2174244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061606526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2011.2168791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061625283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2008.2000746", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnb.2012.2214231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061713965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2007.911748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2009.2033599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2009.2036610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2010.2059039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2011.2163203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2012.2202687", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2012.2232938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2008.2002812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2009.2022402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2011.2157140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/117959721000200001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092584030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/117959721000200001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092584030"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "In this paper, we investigate the problem of robust state estimator design for a class of uncertain discrete-time genetic regulatory networks (GRNs) with time varying delays and randomly occurring uncertainties. By introducing a new discretized Lyapunov\u2013Krasovskii functional together with a free-weighting matrix technique, first we derive a set of sufficient conditions for the existence of global asymptotic state estimator for the discrete-time GRN model with time delays satisfying both the lower and the upper bound of the interval time-varying delay. Further, the obtained results are extended to deal the robust state estimator design for the discrete-time GRN model in the presence of randomly occurring uncertainties which obey certain mutually uncorrelated Bernoulli distributed white noise sequences. The proposed criterions are established in terms of linear matrix inequalities (LMIs) which can be easily solved via Matlab LMI toolbox. Finally, the robust state estimator design has been implemented in a gene network model to illustrate the applicability and usefulness of the obtained theory.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-013-1041-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7480920", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "name": "Robust state estimation for discrete-time genetic regulatory networks with randomly occurring uncertainties", 
    "pagination": "1297-1315", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0797f3bdab981f3298c5994bb9eb0dfc6f005ab3bb062d33f15d33fe8a51e52a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-013-1041-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001594066"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-013-1041-2", 
      "https://app.dimensions.ai/details/publication/pub.1001594066"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000509.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11071-013-1041-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-1041-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-1041-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-1041-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-1041-2'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-013-1041-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nac06dbc5d5174bbc9c322cbd22f58459
4 schema:citation sg:pub.10.1007/s00285-005-0359-x
5 sg:pub.10.1007/s00500-012-0943-0
6 sg:pub.10.1007/s11071-007-9310-6
7 sg:pub.10.1007/s11071-009-9623-8
8 sg:pub.10.1007/s11071-011-0010-x
9 sg:pub.10.1007/s11071-011-0278-x
10 sg:pub.10.1007/s11071-011-0286-x
11 https://doi.org/10.1016/j.cnsns.2010.04.035
12 https://doi.org/10.1016/j.cnsns.2011.02.009
13 https://doi.org/10.1016/j.fss.2010.10.010
14 https://doi.org/10.1016/j.mbs.2010.08.012
15 https://doi.org/10.1016/j.neucom.2009.10.006
16 https://doi.org/10.1016/j.neucom.2010.01.010
17 https://doi.org/10.1016/j.neucom.2010.03.029
18 https://doi.org/10.1016/j.neucom.2011.01.018
19 https://doi.org/10.1016/j.nonrwa.2011.03.008
20 https://doi.org/10.1016/j.physleta.2009.09.055
21 https://doi.org/10.1049/iet-cta.2010.0004
22 https://doi.org/10.1080/00207720903141434
23 https://doi.org/10.1080/00207721.2010.517870
24 https://doi.org/10.1088/0031-8949/82/05/055009
25 https://doi.org/10.1109/tfuzz.2011.2174244
26 https://doi.org/10.1109/tie.2011.2168791
27 https://doi.org/10.1109/tnb.2008.2000746
28 https://doi.org/10.1109/tnb.2012.2214231
29 https://doi.org/10.1109/tnn.2007.911748
30 https://doi.org/10.1109/tnn.2009.2033599
31 https://doi.org/10.1109/tnn.2009.2036610
32 https://doi.org/10.1109/tnn.2010.2059039
33 https://doi.org/10.1109/tnn.2011.2163203
34 https://doi.org/10.1109/tnnls.2012.2202687
35 https://doi.org/10.1109/tnnls.2012.2232938
36 https://doi.org/10.1109/tsmcb.2008.2002812
37 https://doi.org/10.1109/tsmcb.2009.2022402
38 https://doi.org/10.1109/tsmcb.2011.2157140
39 https://doi.org/10.1139/p11-147
40 https://doi.org/10.1139/p2012-088
41 https://doi.org/10.1177/117959721000200001
42 schema:datePublished 2013-12
43 schema:datePublishedReg 2013-12-01
44 schema:description In this paper, we investigate the problem of robust state estimator design for a class of uncertain discrete-time genetic regulatory networks (GRNs) with time varying delays and randomly occurring uncertainties. By introducing a new discretized Lyapunov–Krasovskii functional together with a free-weighting matrix technique, first we derive a set of sufficient conditions for the existence of global asymptotic state estimator for the discrete-time GRN model with time delays satisfying both the lower and the upper bound of the interval time-varying delay. Further, the obtained results are extended to deal the robust state estimator design for the discrete-time GRN model in the presence of randomly occurring uncertainties which obey certain mutually uncorrelated Bernoulli distributed white noise sequences. The proposed criterions are established in terms of linear matrix inequalities (LMIs) which can be easily solved via Matlab LMI toolbox. Finally, the robust state estimator design has been implemented in a gene network model to illustrate the applicability and usefulness of the obtained theory.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N3bb3a1041924456fbf3cbb02c262ec94
49 N5e25cf14a46b4643937964ea96de582e
50 sg:journal.1040905
51 schema:name Robust state estimation for discrete-time genetic regulatory networks with randomly occurring uncertainties
52 schema:pagination 1297-1315
53 schema:productId Nc638b81e92a84409b2d4797d94ae93b2
54 Ne3bf3784dc02410c8693d64d4823606f
55 Nfb6b2c593dab41e7a70e8beddaa9a39d
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001594066
57 https://doi.org/10.1007/s11071-013-1041-2
58 schema:sdDatePublished 2019-04-10T22:31
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Na4910077e911411784f20fb774a06c1c
61 schema:url http://link.springer.com/10.1007%2Fs11071-013-1041-2
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N2fb4e22822114d68b8664a5951a122c9 schema:name Department of Mathematics, Anna University—Regional Centre, 641 047, Coimbatore, India
66 rdf:type schema:Organization
67 N3bb3a1041924456fbf3cbb02c262ec94 schema:volumeNumber 74
68 rdf:type schema:PublicationVolume
69 N52f890d559ca43c0a8d91c2ac493f7c5 rdf:first sg:person.07705373347.23
70 rdf:rest rdf:nil
71 N5e25cf14a46b4643937964ea96de582e schema:issueNumber 4
72 rdf:type schema:PublicationIssue
73 N6d58540f10e840e9ba080e86be614aaf rdf:first sg:person.01163407314.70
74 rdf:rest N8469afd33a084ed294569d6bea61e8e1
75 N8469afd33a084ed294569d6bea61e8e1 rdf:first sg:person.014114021021.53
76 rdf:rest N52f890d559ca43c0a8d91c2ac493f7c5
77 Na4910077e911411784f20fb774a06c1c schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 Nac06dbc5d5174bbc9c322cbd22f58459 rdf:first sg:person.01152244155.83
80 rdf:rest N6d58540f10e840e9ba080e86be614aaf
81 Nc638b81e92a84409b2d4797d94ae93b2 schema:name doi
82 schema:value 10.1007/s11071-013-1041-2
83 rdf:type schema:PropertyValue
84 Ne3bf3784dc02410c8693d64d4823606f schema:name readcube_id
85 schema:value 0797f3bdab981f3298c5994bb9eb0dfc6f005ab3bb062d33f15d33fe8a51e52a
86 rdf:type schema:PropertyValue
87 Nfb6b2c593dab41e7a70e8beddaa9a39d schema:name dimensions_id
88 schema:value pub.1001594066
89 rdf:type schema:PropertyValue
90 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
91 schema:name Information and Computing Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
94 schema:name Artificial Intelligence and Image Processing
95 rdf:type schema:DefinedTerm
96 sg:grant.7480920 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-013-1041-2
97 rdf:type schema:MonetaryGrant
98 sg:journal.1040905 schema:issn 0924-090X
99 1573-269X
100 schema:name Nonlinear Dynamics
101 rdf:type schema:Periodical
102 sg:person.01152244155.83 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
103 schema:familyName Sakthivel
104 schema:givenName R.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01152244155.83
106 rdf:type schema:Person
107 sg:person.01163407314.70 schema:affiliation N2fb4e22822114d68b8664a5951a122c9
108 schema:familyName Mathiyalagan
109 schema:givenName K.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163407314.70
111 rdf:type schema:Person
112 sg:person.014114021021.53 schema:affiliation https://www.grid.ac/institutes/grid.43519.3a
113 schema:familyName Lakshmanan
114 schema:givenName S.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014114021021.53
116 rdf:type schema:Person
117 sg:person.07705373347.23 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
118 schema:familyName Park
119 schema:givenName Ju H.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23
121 rdf:type schema:Person
122 sg:pub.10.1007/s00285-005-0359-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051665804
123 https://doi.org/10.1007/s00285-005-0359-x
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s00500-012-0943-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040573923
126 https://doi.org/10.1007/s00500-012-0943-0
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11071-007-9310-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003762732
129 https://doi.org/10.1007/s11071-007-9310-6
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11071-009-9623-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004431350
132 https://doi.org/10.1007/s11071-009-9623-8
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11071-011-0010-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051594974
135 https://doi.org/10.1007/s11071-011-0010-x
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11071-011-0278-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024771465
138 https://doi.org/10.1007/s11071-011-0278-x
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11071-011-0286-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001341964
141 https://doi.org/10.1007/s11071-011-0286-x
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.cnsns.2010.04.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013657839
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.cnsns.2011.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002830602
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.fss.2010.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049060326
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.mbs.2010.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003022295
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.neucom.2009.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051567699
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.neucom.2010.01.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053319803
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.neucom.2010.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037749475
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.neucom.2011.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044004049
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.nonrwa.2011.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037625409
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.physleta.2009.09.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012910099
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1049/iet-cta.2010.0004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056823039
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/00207720903141434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018234560
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1080/00207721.2010.517870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030773780
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0031-8949/82/05/055009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059002956
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tfuzz.2011.2174244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061606526
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tie.2011.2168791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061625283
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tnb.2008.2000746 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713790
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tnb.2012.2214231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061713965
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tnn.2007.911748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717328
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tnn.2009.2033599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717621
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tnn.2009.2036610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717644
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tnn.2010.2059039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717755
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tnn.2011.2163203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717933
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/tnnls.2012.2202687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718130
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tnnls.2012.2232938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718213
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tsmcb.2008.2002812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796851
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/tsmcb.2009.2022402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797092
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/tsmcb.2011.2157140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797348
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1139/p11-147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038737437
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1139/p2012-088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019964215
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1177/117959721000200001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092584030
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.264381.a schema:alternateName Sungkyunkwan University
206 schema:name Department of Mathematics, Sungkyunkwan University, 440 746, Suwon, Republic of Korea
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
209 schema:name Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 712-749, Dae-dong, Kyongsan, Republic of Korea
210 rdf:type schema:Organization
211 https://www.grid.ac/institutes/grid.43519.3a schema:alternateName United Arab Emirates University
212 schema:name Department of Mathematics, Faculty of Science, UAE University, 15551, Al-Ain, UAE
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...