State estimator for neural networks with sampled data using discontinuous Lyapunov functional approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-07

AUTHORS

S. Lakshmanan, Ju H. Park, R. Rakkiyappan, H. Y. Jung

ABSTRACT

In this paper, the sampled-data state estimation problem is investigated for neural networks with time-varying delays. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled data estimator is constructed. Based on the extended Wirtinger inequality, a discontinuous Lyapunov functional is introduced, which makes full use of the sawtooth structure characteristic of sampling input delay. New delay-dependent criteria are developed to estimate the neuron states through available output measurements such that the estimation error system is asymptotically stable. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulations are given to demonstrate the usefulness and effectiveness of the presented results. More... »

PAGES

509-520

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-013-0805-z

DOI

http://dx.doi.org/10.1007/s11071-013-0805-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003491349


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Nonlinear Dynamics Group, Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 214-1 Dae-dong, 712-749, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lakshmanan", 
        "givenName": "S.", 
        "id": "sg:person.014114021021.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014114021021.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Nonlinear Dynamics Group, Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 214-1 Dae-dong, 712-749, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju H.", 
        "id": "sg:person.07705373347.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bharathiar University", 
          "id": "https://www.grid.ac/institutes/grid.411677.2", 
          "name": [
            "Department of Mathematics, Bharathiar University, 641 046, Coimbatore, Tamilnadu, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rakkiyappan", 
        "givenName": "R.", 
        "id": "sg:person.0775310040.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775310040.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Nonlinear Dynamics Group, Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 214-1 Dae-dong, 712-749, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "H. Y.", 
        "id": "sg:person.015135050055.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015135050055.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/rnc.2829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000832831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0286-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001341964", 
          "https://doi.org/10.1007/s11071-011-0286-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2008.02.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001539474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-007-9310-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003762732", 
          "https://doi.org/10.1007/s11071-007-9310-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-009-9623-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004431350", 
          "https://doi.org/10.1007/s11071-009-9623-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-009-9623-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004431350", 
          "https://doi.org/10.1007/s11071-009-9623-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2008.04.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006237852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sysconle.2007.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006345107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007278660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9926-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008998322", 
          "https://doi.org/10.1007/s11071-010-9926-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cta.4490200504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017033813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2011.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017771027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-012-0404-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018196556", 
          "https://doi.org/10.1007/s11071-012-0404-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-012-0544-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018409670", 
          "https://doi.org/10.1007/s11071-012-0544-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2008.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019693760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-9956-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020760110", 
          "https://doi.org/10.1007/s11071-011-9956-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2009.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021788695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2009.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023416892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-012-0420-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024220997", 
          "https://doi.org/10.1007/s11071-012-0420-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2009.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028163707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2010.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042547655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043525195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043733861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfranklin.2012.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044948075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1045014127", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0039-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045014127", 
          "https://doi.org/10.1007/978-1-4612-0039-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0039-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045014127", 
          "https://doi.org/10.1007/978-1-4612-0039-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2008.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049569695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nonrwa.2007.10.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050077522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0010-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051594974", 
          "https://doi.org/10.1007/s11071-011-0010-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-cta:19949976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056846593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamci/dnq023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059687433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/31.7600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061153347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/37.898794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061163464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/81.964419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061237403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/9.917666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061246693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2002.1000277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061474984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2009.2035271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061570164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2004.841813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2006.872262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2006.889629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2010.2050587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797242"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-07", 
    "datePublishedReg": "2013-07-01", 
    "description": "In this paper, the sampled-data state estimation problem is investigated for neural networks with time-varying delays. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled data estimator is constructed. Based on the extended Wirtinger inequality, a discontinuous Lyapunov functional is introduced, which makes full use of the sawtooth structure characteristic of sampling input delay. New delay-dependent criteria are developed to estimate the neuron states through available output measurements such that the estimation error system is asymptotically stable. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulations are given to demonstrate the usefulness and effectiveness of the presented results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-013-0805-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7449158", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "73"
      }
    ], 
    "name": "State estimator for neural networks with sampled data using discontinuous Lyapunov functional approach", 
    "pagination": "509-520", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "10a1fd3dbbe4b8cc185313d7e66d632896a029ce7cc76bca8901c10fec48096b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-013-0805-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003491349"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-013-0805-z", 
      "https://app.dimensions.ai/details/publication/pub.1003491349"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11071-013-0805-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-0805-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-0805-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-0805-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-0805-z'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      67 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-013-0805-z schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nf04cf4ce15324ef7a7c64e5ca0b6fa67
4 schema:citation sg:pub.10.1007/978-1-4612-0039-0
5 sg:pub.10.1007/s11071-007-9310-6
6 sg:pub.10.1007/s11071-009-9623-8
7 sg:pub.10.1007/s11071-010-9926-9
8 sg:pub.10.1007/s11071-011-0010-x
9 sg:pub.10.1007/s11071-011-0286-x
10 sg:pub.10.1007/s11071-011-9956-y
11 sg:pub.10.1007/s11071-012-0404-4
12 sg:pub.10.1007/s11071-012-0420-4
13 sg:pub.10.1007/s11071-012-0544-6
14 https://app.dimensions.ai/details/publication/pub.1045014127
15 https://doi.org/10.1002/cta.4490200504
16 https://doi.org/10.1002/rnc.2829
17 https://doi.org/10.1016/j.amc.2008.02.024
18 https://doi.org/10.1016/j.amc.2008.04.025
19 https://doi.org/10.1016/j.amc.2008.11.017
20 https://doi.org/10.1016/j.automatica.2009.11.017
21 https://doi.org/10.1016/j.automatica.2011.09.029
22 https://doi.org/10.1016/j.jfranklin.2010.05.001
23 https://doi.org/10.1016/j.jfranklin.2012.05.001
24 https://doi.org/10.1016/j.neucom.2009.12.017
25 https://doi.org/10.1016/j.neucom.2009.12.019
26 https://doi.org/10.1016/j.neucom.2010.03.020
27 https://doi.org/10.1016/j.neucom.2010.09.017
28 https://doi.org/10.1016/j.neucom.2010.10.006
29 https://doi.org/10.1016/j.neunet.2008.09.015
30 https://doi.org/10.1016/j.nonrwa.2007.10.017
31 https://doi.org/10.1016/j.sysconle.2007.10.009
32 https://doi.org/10.1049/ip-cta:19949976
33 https://doi.org/10.1093/imamci/dnq023
34 https://doi.org/10.1109/31.7600
35 https://doi.org/10.1109/37.898794
36 https://doi.org/10.1109/81.964419
37 https://doi.org/10.1109/9.917666
38 https://doi.org/10.1109/tac.2002.1000277
39 https://doi.org/10.1109/tcsii.2009.2035271
40 https://doi.org/10.1109/tnn.2004.841813
41 https://doi.org/10.1109/tsmcb.2006.872262
42 https://doi.org/10.1109/tsmcb.2006.889629
43 https://doi.org/10.1109/tsmcb.2010.2050587
44 schema:datePublished 2013-07
45 schema:datePublishedReg 2013-07-01
46 schema:description In this paper, the sampled-data state estimation problem is investigated for neural networks with time-varying delays. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled data estimator is constructed. Based on the extended Wirtinger inequality, a discontinuous Lyapunov functional is introduced, which makes full use of the sawtooth structure characteristic of sampling input delay. New delay-dependent criteria are developed to estimate the neuron states through available output measurements such that the estimation error system is asymptotically stable. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulations are given to demonstrate the usefulness and effectiveness of the presented results.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf N339d3b28f8134cbeb239b43ca3ace12c
51 Nd98dfe44a47b4cc2be74c54b66ec724f
52 sg:journal.1040905
53 schema:name State estimator for neural networks with sampled data using discontinuous Lyapunov functional approach
54 schema:pagination 509-520
55 schema:productId N113e4c25caa44e4d9689f6176011c452
56 N9bad9660fdfb410a91e62c81faa77372
57 Nd24159d8f543477b9c0d295b990a73d3
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003491349
59 https://doi.org/10.1007/s11071-013-0805-z
60 schema:sdDatePublished 2019-04-10T15:50
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Ne9502912837e47bb83b3769d6a6dd815
63 schema:url http://link.springer.com/10.1007%2Fs11071-013-0805-z
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N113e4c25caa44e4d9689f6176011c452 schema:name doi
68 schema:value 10.1007/s11071-013-0805-z
69 rdf:type schema:PropertyValue
70 N2e85a9f43e2d4b81902d798c308ca12c rdf:first sg:person.015135050055.77
71 rdf:rest rdf:nil
72 N339d3b28f8134cbeb239b43ca3ace12c schema:volumeNumber 73
73 rdf:type schema:PublicationVolume
74 N392cb1cfc68346ebbede499673317194 rdf:first sg:person.07705373347.23
75 rdf:rest N53e1c84f681e4c9eb8f316fbb9a8f2b4
76 N53e1c84f681e4c9eb8f316fbb9a8f2b4 rdf:first sg:person.0775310040.28
77 rdf:rest N2e85a9f43e2d4b81902d798c308ca12c
78 N9bad9660fdfb410a91e62c81faa77372 schema:name readcube_id
79 schema:value 10a1fd3dbbe4b8cc185313d7e66d632896a029ce7cc76bca8901c10fec48096b
80 rdf:type schema:PropertyValue
81 Nd24159d8f543477b9c0d295b990a73d3 schema:name dimensions_id
82 schema:value pub.1003491349
83 rdf:type schema:PropertyValue
84 Nd98dfe44a47b4cc2be74c54b66ec724f schema:issueNumber 1-2
85 rdf:type schema:PublicationIssue
86 Ne9502912837e47bb83b3769d6a6dd815 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nf04cf4ce15324ef7a7c64e5ca0b6fa67 rdf:first sg:person.014114021021.53
89 rdf:rest N392cb1cfc68346ebbede499673317194
90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
91 schema:name Mathematical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
94 schema:name Statistics
95 rdf:type schema:DefinedTerm
96 sg:grant.7449158 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-013-0805-z
97 rdf:type schema:MonetaryGrant
98 sg:journal.1040905 schema:issn 0924-090X
99 1573-269X
100 schema:name Nonlinear Dynamics
101 rdf:type schema:Periodical
102 sg:person.014114021021.53 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
103 schema:familyName Lakshmanan
104 schema:givenName S.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014114021021.53
106 rdf:type schema:Person
107 sg:person.015135050055.77 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
108 schema:familyName Jung
109 schema:givenName H. Y.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015135050055.77
111 rdf:type schema:Person
112 sg:person.07705373347.23 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
113 schema:familyName Park
114 schema:givenName Ju H.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23
116 rdf:type schema:Person
117 sg:person.0775310040.28 schema:affiliation https://www.grid.ac/institutes/grid.411677.2
118 schema:familyName Rakkiyappan
119 schema:givenName R.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775310040.28
121 rdf:type schema:Person
122 sg:pub.10.1007/978-1-4612-0039-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045014127
123 https://doi.org/10.1007/978-1-4612-0039-0
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11071-007-9310-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003762732
126 https://doi.org/10.1007/s11071-007-9310-6
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11071-009-9623-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004431350
129 https://doi.org/10.1007/s11071-009-9623-8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11071-010-9926-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008998322
132 https://doi.org/10.1007/s11071-010-9926-9
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11071-011-0010-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051594974
135 https://doi.org/10.1007/s11071-011-0010-x
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11071-011-0286-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001341964
138 https://doi.org/10.1007/s11071-011-0286-x
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11071-011-9956-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020760110
141 https://doi.org/10.1007/s11071-011-9956-y
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11071-012-0404-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018196556
144 https://doi.org/10.1007/s11071-012-0404-4
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11071-012-0420-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024220997
147 https://doi.org/10.1007/s11071-012-0420-4
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11071-012-0544-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018409670
150 https://doi.org/10.1007/s11071-012-0544-6
151 rdf:type schema:CreativeWork
152 https://app.dimensions.ai/details/publication/pub.1045014127 schema:CreativeWork
153 https://doi.org/10.1002/cta.4490200504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017033813
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/rnc.2829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000832831
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.amc.2008.02.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001539474
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.amc.2008.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006237852
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.amc.2008.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019693760
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.automatica.2009.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021788695
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.automatica.2011.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017771027
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.jfranklin.2010.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042547655
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jfranklin.2012.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044948075
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.neucom.2009.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028163707
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.neucom.2009.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023416892
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.neucom.2010.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043733861
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.neucom.2010.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043525195
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.neucom.2010.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007278660
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.neunet.2008.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049569695
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.nonrwa.2007.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050077522
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.sysconle.2007.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006345107
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1049/ip-cta:19949976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056846593
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1093/imamci/dnq023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059687433
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/31.7600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061153347
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/37.898794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061163464
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1109/81.964419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061237403
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1109/9.917666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061246693
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1109/tac.2002.1000277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061474984
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1109/tcsii.2009.2035271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061570164
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1109/tnn.2004.841813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716829
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1109/tsmcb.2006.872262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796609
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1109/tsmcb.2006.889629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796718
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1109/tsmcb.2010.2050587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797242
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.411677.2 schema:alternateName Bharathiar University
212 schema:name Department of Mathematics, Bharathiar University, 641 046, Coimbatore, Tamilnadu, India
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
215 schema:name Nonlinear Dynamics Group, Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 214-1 Dae-dong, 712-749, Kyongsan, Republic of Korea
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...