Ontology type: schema:ScholarlyArticle
2013-07
AUTHORSS. Lakshmanan, Ju H. Park, R. Rakkiyappan, H. Y. Jung
ABSTRACTIn this paper, the sampled-data state estimation problem is investigated for neural networks with time-varying delays. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled data estimator is constructed. Based on the extended Wirtinger inequality, a discontinuous Lyapunov functional is introduced, which makes full use of the sawtooth structure characteristic of sampling input delay. New delay-dependent criteria are developed to estimate the neuron states through available output measurements such that the estimation error system is asymptotically stable. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulations are given to demonstrate the usefulness and effectiveness of the presented results. More... »
PAGES509-520
http://scigraph.springernature.com/pub.10.1007/s11071-013-0805-z
DOIhttp://dx.doi.org/10.1007/s11071-013-0805-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1003491349
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Yeungnam University",
"id": "https://www.grid.ac/institutes/grid.413028.c",
"name": [
"Nonlinear Dynamics Group, Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 214-1 Dae-dong, 712-749, Kyongsan, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Lakshmanan",
"givenName": "S.",
"id": "sg:person.014114021021.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014114021021.53"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Yeungnam University",
"id": "https://www.grid.ac/institutes/grid.413028.c",
"name": [
"Nonlinear Dynamics Group, Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 214-1 Dae-dong, 712-749, Kyongsan, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Park",
"givenName": "Ju H.",
"id": "sg:person.07705373347.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Bharathiar University",
"id": "https://www.grid.ac/institutes/grid.411677.2",
"name": [
"Department of Mathematics, Bharathiar University, 641 046, Coimbatore, Tamilnadu, India"
],
"type": "Organization"
},
"familyName": "Rakkiyappan",
"givenName": "R.",
"id": "sg:person.0775310040.28",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775310040.28"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Yeungnam University",
"id": "https://www.grid.ac/institutes/grid.413028.c",
"name": [
"Nonlinear Dynamics Group, Department of Electrical Engineering/Information and Communication Engineering, Yeungnam University, 214-1 Dae-dong, 712-749, Kyongsan, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Jung",
"givenName": "H. Y.",
"id": "sg:person.015135050055.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015135050055.77"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1002/rnc.2829",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000832831"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-011-0286-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001341964",
"https://doi.org/10.1007/s11071-011-0286-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.amc.2008.02.024",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001539474"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-007-9310-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003762732",
"https://doi.org/10.1007/s11071-007-9310-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-009-9623-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004431350",
"https://doi.org/10.1007/s11071-009-9623-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-009-9623-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004431350",
"https://doi.org/10.1007/s11071-009-9623-8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.amc.2008.04.025",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006237852"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.sysconle.2007.10.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006345107"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2010.10.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007278660"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-010-9926-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008998322",
"https://doi.org/10.1007/s11071-010-9926-9"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/cta.4490200504",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017033813"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.automatica.2011.09.029",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017771027"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-012-0404-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018196556",
"https://doi.org/10.1007/s11071-012-0404-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-012-0544-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018409670",
"https://doi.org/10.1007/s11071-012-0544-6"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.amc.2008.11.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019693760"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-011-9956-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020760110",
"https://doi.org/10.1007/s11071-011-9956-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.automatica.2009.11.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021788695"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2009.12.019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023416892"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-012-0420-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024220997",
"https://doi.org/10.1007/s11071-012-0420-4"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2009.12.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028163707"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfranklin.2010.05.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042547655"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2010.09.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043525195"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neucom.2010.03.020",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043733861"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jfranklin.2012.05.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044948075"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1045014127",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-0039-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045014127",
"https://doi.org/10.1007/978-1-4612-0039-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-0039-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045014127",
"https://doi.org/10.1007/978-1-4612-0039-0"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neunet.2008.09.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049569695"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.nonrwa.2007.10.017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050077522"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11071-011-0010-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051594974",
"https://doi.org/10.1007/s11071-011-0010-x"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1049/ip-cta:19949976",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1056846593"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/imamci/dnq023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059687433"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/31.7600",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061153347"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/37.898794",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061163464"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/81.964419",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061237403"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/9.917666",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061246693"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tac.2002.1000277",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061474984"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tcsii.2009.2035271",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061570164"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tnn.2004.841813",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061716829"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmcb.2006.872262",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061796609"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmcb.2006.889629",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061796718"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tsmcb.2010.2050587",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061797242"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-07",
"datePublishedReg": "2013-07-01",
"description": "In this paper, the sampled-data state estimation problem is investigated for neural networks with time-varying delays. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states, and a sampled data estimator is constructed. Based on the extended Wirtinger inequality, a discontinuous Lyapunov functional is introduced, which makes full use of the sawtooth structure characteristic of sampling input delay. New delay-dependent criteria are developed to estimate the neuron states through available output measurements such that the estimation error system is asymptotically stable. The criteria are formulated in terms of a set of linear matrix inequalities (LMIs), which can be checked efficiently by use of some standard numerical packages. Finally, a numerical example and its simulations are given to demonstrate the usefulness and effectiveness of the presented results.",
"genre": "research_article",
"id": "sg:pub.10.1007/s11071-013-0805-z",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.7449158",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1040905",
"issn": [
"0924-090X",
"1573-269X"
],
"name": "Nonlinear Dynamics",
"type": "Periodical"
},
{
"issueNumber": "1-2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "73"
}
],
"name": "State estimator for neural networks with sampled data using discontinuous Lyapunov functional approach",
"pagination": "509-520",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"10a1fd3dbbe4b8cc185313d7e66d632896a029ce7cc76bca8901c10fec48096b"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11071-013-0805-z"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1003491349"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11071-013-0805-z",
"https://app.dimensions.ai/details/publication/pub.1003491349"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-10T15:50",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000510.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007%2Fs11071-013-0805-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-0805-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-0805-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-0805-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-013-0805-z'
This table displays all metadata directly associated to this object as RDF triples.
216 TRIPLES
21 PREDICATES
67 URIs
19 LITERALS
7 BLANK NODES