Global synchronization of stochastic delayed complex networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-12

AUTHORS

Bo Song, Ju H. Park, Zheng-Guang Wu, Ya Zhang

ABSTRACT

This paper is concerned with the delay-dependent synchronization criterion for stochastic complex networks with time delays. Firstly, expectations of stochastic cross terms containing the Itô integral are investigated by utilizing stochastic analysis techniques. In fact, in order to obtain less conservative delay-dependent conditions for stochastic delay systems including stochastic complex (or neural) networks with time delays, how to deal with expectations of these stochastic cross terms is an important problem, and expectations of these stochastic terms were not dealt with properly in many existing results. Then, based on the investigation of expectations of stochastic cross terms, this paper proposes a novel delay-dependent synchronization criterion for stochastic delayed complex networks. In the derivation process, the mathematical development avoids bounding stochastic cross terms. Thus, the method leads to a simple criterion and shows less conservatism. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach. More... »

PAGES

2389-2399

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-012-0627-4

DOI

http://dx.doi.org/10.1007/s11071-012-0627-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038889775


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangsu Normal University", 
          "id": "https://www.grid.ac/institutes/grid.411857.e", 
          "name": [
            "Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea", 
            "School of Electrical Engineering and Automation, Jiangsu Normal University, 221116, Xuzhou, Jiangsu, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Bo", 
        "id": "sg:person.010415047515.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415047515.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju H.", 
        "id": "sg:person.07705373347.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea", 
            "National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, 310027, Hangzhou, Zhejiang, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Zheng-Guang", 
        "id": "sg:person.010337770007.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337770007.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xuzhou Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.464484.e", 
          "name": [
            "School of Mathematics and Physics, Xuzhou Institute of Technology, 221000, Xuzhou, Jiangsu, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Ya", 
        "id": "sg:person.013366047753.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013366047753.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-6911(03)00207-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001186622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6911(03)00207-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001186622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2007.06.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002040893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2009.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005626086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2003.10.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006250537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-007-9303-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011517353", 
          "https://doi.org/10.1007/s11071-007-9303-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2006.08.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011771587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2010.01.075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012110666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0092-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012570566", 
          "https://doi.org/10.1007/s11071-011-0092-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0164-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016309546", 
          "https://doi.org/10.1007/s11071-011-0164-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2004.05.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017677210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017811390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0100-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018900597", 
          "https://doi.org/10.1007/s11071-011-0100-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-009-9562-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020974272", 
          "https://doi.org/10.1007/s10957-009-9562-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-009-9562-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020974272", 
          "https://doi.org/10.1007/s10957-009-9562-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9896-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037334634", 
          "https://doi.org/10.1007/s11071-010-9896-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2011.12.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039997548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10957-011-9858-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040527704", 
          "https://doi.org/10.1007/s10957-011-9858-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00207170110067116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041378480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2008.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044128177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2005.12.092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044799345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6911(01)00114-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046741910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/81.956024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061237397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/81.974874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061237423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2005.849233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061475926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2008.2008499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061566180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2009.2033599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2009.2040000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2008.2004964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2008.2006860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127402004802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062953761"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-12", 
    "datePublishedReg": "2012-12-01", 
    "description": "This paper is concerned with the delay-dependent synchronization criterion for stochastic complex networks with time delays. Firstly, expectations of stochastic cross terms containing the It\u00f4 integral are investigated by utilizing stochastic analysis techniques. In fact, in order to obtain less conservative delay-dependent conditions for stochastic delay systems including stochastic complex (or neural) networks with time delays, how to deal with expectations of these stochastic cross terms is an important problem, and expectations of these stochastic terms were not dealt with properly in many existing results. Then, based on the investigation of expectations of stochastic cross terms, this paper proposes a novel delay-dependent synchronization criterion for stochastic delayed complex networks. In the derivation process, the mathematical development avoids bounding stochastic cross terms. Thus, the method leads to a simple criterion and shows less conservatism. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-012-0627-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6999678", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7021378", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7449158", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "name": "Global synchronization of stochastic delayed complex networks", 
    "pagination": "2389-2399", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9403d96cacdada212ffc228e40ce44c9144ebdfbfa91858583a58b127caff3c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-012-0627-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038889775"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-012-0627-4", 
      "https://app.dimensions.ai/details/publication/pub.1038889775"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11071-012-0627-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-012-0627-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-012-0627-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-012-0627-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-012-0627-4'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-012-0627-4 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N20516fb520d7439894b21c298dc191a5
4 schema:citation sg:pub.10.1007/s10957-009-9562-z
5 sg:pub.10.1007/s10957-011-9858-7
6 sg:pub.10.1007/s11071-007-9303-5
7 sg:pub.10.1007/s11071-010-9896-y
8 sg:pub.10.1007/s11071-011-0092-5
9 sg:pub.10.1007/s11071-011-0100-9
10 sg:pub.10.1007/s11071-011-0164-6
11 sg:pub.10.1038/30918
12 https://doi.org/10.1002/rnc.1600
13 https://doi.org/10.1016/j.amc.2010.01.075
14 https://doi.org/10.1016/j.cnsns.2011.12.021
15 https://doi.org/10.1016/j.neucom.2009.06.006
16 https://doi.org/10.1016/j.physa.2003.10.052
17 https://doi.org/10.1016/j.physa.2004.05.058
18 https://doi.org/10.1016/j.physa.2007.06.043
19 https://doi.org/10.1016/j.physleta.2005.12.092
20 https://doi.org/10.1016/j.physleta.2006.08.033
21 https://doi.org/10.1016/j.physleta.2008.08.008
22 https://doi.org/10.1016/s0167-6911(01)00114-1
23 https://doi.org/10.1016/s0167-6911(03)00207-x
24 https://doi.org/10.1080/00207170110067116
25 https://doi.org/10.1109/81.956024
26 https://doi.org/10.1109/81.974874
27 https://doi.org/10.1109/tac.2005.849233
28 https://doi.org/10.1109/tcsi.2008.2008499
29 https://doi.org/10.1109/tnn.2009.2033599
30 https://doi.org/10.1109/tnn.2009.2040000
31 https://doi.org/10.1109/tsmcb.2008.2004964
32 https://doi.org/10.1109/tsmcb.2008.2006860
33 https://doi.org/10.1126/science.286.5439.509
34 https://doi.org/10.1142/s0218127402004802
35 schema:datePublished 2012-12
36 schema:datePublishedReg 2012-12-01
37 schema:description This paper is concerned with the delay-dependent synchronization criterion for stochastic complex networks with time delays. Firstly, expectations of stochastic cross terms containing the Itô integral are investigated by utilizing stochastic analysis techniques. In fact, in order to obtain less conservative delay-dependent conditions for stochastic delay systems including stochastic complex (or neural) networks with time delays, how to deal with expectations of these stochastic cross terms is an important problem, and expectations of these stochastic terms were not dealt with properly in many existing results. Then, based on the investigation of expectations of stochastic cross terms, this paper proposes a novel delay-dependent synchronization criterion for stochastic delayed complex networks. In the derivation process, the mathematical development avoids bounding stochastic cross terms. Thus, the method leads to a simple criterion and shows less conservatism. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N33f1b4865c0b422d96c64424f3a6c3c0
42 Nc3f5e34773ed48ab88c1e6f3fdd147d8
43 sg:journal.1040905
44 schema:name Global synchronization of stochastic delayed complex networks
45 schema:pagination 2389-2399
46 schema:productId N050aea04b02348fab3ff36735295ed5f
47 N45a01a745654407497dae4a2a96f69eb
48 N52dde30ed5a54455b2808f254fe1ced7
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038889775
50 https://doi.org/10.1007/s11071-012-0627-4
51 schema:sdDatePublished 2019-04-10T20:47
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N83954d7e17e64cc6bb1c94374a167fd9
54 schema:url http://link.springer.com/10.1007%2Fs11071-012-0627-4
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N050aea04b02348fab3ff36735295ed5f schema:name dimensions_id
59 schema:value pub.1038889775
60 rdf:type schema:PropertyValue
61 N0f2a63176afb49c9b378b30218f96864 rdf:first sg:person.013366047753.22
62 rdf:rest rdf:nil
63 N20516fb520d7439894b21c298dc191a5 rdf:first sg:person.010415047515.28
64 rdf:rest N4f5132a8a085458196ddc469933907fb
65 N33f1b4865c0b422d96c64424f3a6c3c0 schema:volumeNumber 70
66 rdf:type schema:PublicationVolume
67 N45a01a745654407497dae4a2a96f69eb schema:name doi
68 schema:value 10.1007/s11071-012-0627-4
69 rdf:type schema:PropertyValue
70 N4f5132a8a085458196ddc469933907fb rdf:first sg:person.07705373347.23
71 rdf:rest Nd6b90add55424a998d2f7a9e85c1b243
72 N52dde30ed5a54455b2808f254fe1ced7 schema:name readcube_id
73 schema:value b9403d96cacdada212ffc228e40ce44c9144ebdfbfa91858583a58b127caff3c
74 rdf:type schema:PropertyValue
75 N83954d7e17e64cc6bb1c94374a167fd9 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 Nc3f5e34773ed48ab88c1e6f3fdd147d8 schema:issueNumber 4
78 rdf:type schema:PublicationIssue
79 Nd6b90add55424a998d2f7a9e85c1b243 rdf:first sg:person.010337770007.21
80 rdf:rest N0f2a63176afb49c9b378b30218f96864
81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
85 schema:name Statistics
86 rdf:type schema:DefinedTerm
87 sg:grant.6999678 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-012-0627-4
88 rdf:type schema:MonetaryGrant
89 sg:grant.7021378 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-012-0627-4
90 rdf:type schema:MonetaryGrant
91 sg:grant.7449158 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-012-0627-4
92 rdf:type schema:MonetaryGrant
93 sg:journal.1040905 schema:issn 0924-090X
94 1573-269X
95 schema:name Nonlinear Dynamics
96 rdf:type schema:Periodical
97 sg:person.010337770007.21 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
98 schema:familyName Wu
99 schema:givenName Zheng-Guang
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337770007.21
101 rdf:type schema:Person
102 sg:person.010415047515.28 schema:affiliation https://www.grid.ac/institutes/grid.411857.e
103 schema:familyName Song
104 schema:givenName Bo
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010415047515.28
106 rdf:type schema:Person
107 sg:person.013366047753.22 schema:affiliation https://www.grid.ac/institutes/grid.464484.e
108 schema:familyName Zhang
109 schema:givenName Ya
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013366047753.22
111 rdf:type schema:Person
112 sg:person.07705373347.23 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
113 schema:familyName Park
114 schema:givenName Ju H.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23
116 rdf:type schema:Person
117 sg:pub.10.1007/s10957-009-9562-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1020974272
118 https://doi.org/10.1007/s10957-009-9562-z
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s10957-011-9858-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040527704
121 https://doi.org/10.1007/s10957-011-9858-7
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11071-007-9303-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011517353
124 https://doi.org/10.1007/s11071-007-9303-5
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11071-010-9896-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037334634
127 https://doi.org/10.1007/s11071-010-9896-y
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11071-011-0092-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012570566
130 https://doi.org/10.1007/s11071-011-0092-5
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s11071-011-0100-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018900597
133 https://doi.org/10.1007/s11071-011-0100-9
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11071-011-0164-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016309546
136 https://doi.org/10.1007/s11071-011-0164-6
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
139 https://doi.org/10.1038/30918
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1002/rnc.1600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017811390
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.amc.2010.01.075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012110666
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.cnsns.2011.12.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039997548
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.neucom.2009.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005626086
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.physa.2003.10.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006250537
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.physa.2004.05.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017677210
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.physa.2007.06.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002040893
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.physleta.2005.12.092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044799345
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.physleta.2006.08.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011771587
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.physleta.2008.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044128177
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/s0167-6911(01)00114-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046741910
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0167-6911(03)00207-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001186622
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1080/00207170110067116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041378480
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/81.956024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061237397
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/81.974874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061237423
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tac.2005.849233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061475926
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tcsi.2008.2008499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061566180
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tnn.2009.2033599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717621
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tnn.2009.2040000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717669
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tsmcb.2008.2004964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796866
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tsmcb.2008.2006860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796887
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1142/s0218127402004802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062953761
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
188 schema:name National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, 310027, Hangzhou, Zhejiang, P.R. China
189 Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.411857.e schema:alternateName Jiangsu Normal University
192 schema:name Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea
193 School of Electrical Engineering and Automation, Jiangsu Normal University, 221116, Xuzhou, Jiangsu, P.R. China
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
196 schema:name Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.464484.e schema:alternateName Xuzhou Institute of Technology
199 schema:name School of Mathematics and Physics, Xuzhou Institute of Technology, 221000, Xuzhou, Jiangsu, P.R. China
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...