Discontinuous Lyapunov functional approach to synchronization of time-delay neural networks using sampled-data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09

AUTHORS

Zheng-Guang Wu, Ju H. Park, Hongye Su, Jian Chu

ABSTRACT

This paper investigates the synchronization problem of neural networks with time-varying delay under sampled-data control in the presence of a constant input delay. Based on the extended Wirtinger inequality, a discontinuous Lyapunov functional is introduced, which makes full use of the sawtooth structure characteristic of sampling input delay. A simple and less conservative synchronization criterion is given to ensure the master systems synchronize with the slave systems by using the linear matrix inequality (LMI) approach. The design method of the desired sampled-data controller is also proposed. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods. More... »

PAGES

2021-2030

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-012-0404-4

DOI

http://dx.doi.org/10.1007/s11071-012-0404-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018196556


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea", 
            "National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Yuquan Campus, 310027, Hangzhou, Zhejiang, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Zheng-Guang", 
        "id": "sg:person.010337770007.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337770007.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Ju H.", 
        "id": "sg:person.07705373347.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Yuquan Campus, 310027, Hangzhou, Zhejiang, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Hongye", 
        "id": "sg:person.01001477736.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001477736.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Yuquan Campus, 310027, Hangzhou, Zhejiang, P.R. China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "Jian", 
        "id": "sg:person.012062531025.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062531025.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.amc.2011.02.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001982772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2004.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002112625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2008.10.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002685644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2005.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003695671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2005.03.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003695671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-009-9623-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004431350", 
          "https://doi.org/10.1007/s11071-009-9623-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-009-9623-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004431350", 
          "https://doi.org/10.1007/s11071-009-9623-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2009.03.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007650940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.04.105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007835084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2006.03.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008376384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2007.04.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008887650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2011.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010021041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2010.12.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012680503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-009-9509-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013088527", 
          "https://doi.org/10.1007/s11071-009-9509-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-009-9509-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013088527", 
          "https://doi.org/10.1007/s11071-009-9509-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-011-0408-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017441971", 
          "https://doi.org/10.1007/s12555-011-0408-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2011.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017771027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2008.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019693760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024933061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2010.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025374206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-009-9537-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027275035", 
          "https://doi.org/10.1007/s11071-009-9537-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-009-9537-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027275035", 
          "https://doi.org/10.1007/s11071-009-9537-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2006.05.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030912317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chaos.2008.04.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032553346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-008-9454-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037022088", 
          "https://doi.org/10.1007/s11071-008-9454-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-011-9162-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037031487", 
          "https://doi.org/10.1007/s11571-011-9162-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11571-010-9132-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037356073", 
          "https://doi.org/10.1007/s11571-010-9132-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2006.10.073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039927934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042140230", 
          "https://doi.org/10.1007/s11071-011-0032-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-008-9424-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042278174", 
          "https://doi.org/10.1007/s11071-008-9424-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9800-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043371531", 
          "https://doi.org/10.1007/s11071-010-9800-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-010-9800-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043371531", 
          "https://doi.org/10.1007/s11071-010-9800-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.03.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043733861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1045014127", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0039-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045014127", 
          "https://doi.org/10.1007/978-1-4612-0039-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0039-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045014127", 
          "https://doi.org/10.1007/978-1-4612-0039-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-011-0124-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046189166", 
          "https://doi.org/10.1007/s12555-011-0124-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2005.10.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049175428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2008.05.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052682946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0960-0779(04)00380-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054666764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imamci/dnq023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059687433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.64.821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060800981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2007.899627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061565946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2008.916462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061566283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2008.924112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061566467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2009.2015388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061570038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2006.888373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2009.2033910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2009.2034742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2010.2050904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2010.2056383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2011.2128341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2005.851539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2009.2030506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2010.2040273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061797202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471427950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109491859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471427950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109491859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471427950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109491859"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "This paper investigates the synchronization problem of neural networks with time-varying delay under sampled-data control in the presence of a constant input delay. Based on the extended Wirtinger inequality, a discontinuous Lyapunov functional is introduced, which makes full use of the sawtooth structure characteristic of sampling input delay. A simple and less conservative synchronization criterion is given to ensure the master systems synchronize with the slave systems by using the linear matrix inequality (LMI) approach. The design method of the desired sampled-data controller is also proposed. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-012-0404-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7021378", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7449158", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "name": "Discontinuous Lyapunov functional approach to synchronization of time-delay neural networks using sampled-data", 
    "pagination": "2021-2030", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "56b3843ebcaea78073a8d00304a52d080116fa05564b60616cc3a502b47bab33"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-012-0404-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018196556"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-012-0404-4", 
      "https://app.dimensions.ai/details/publication/pub.1018196556"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11071-012-0404-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-012-0404-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-012-0404-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-012-0404-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-012-0404-4'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      77 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-012-0404-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb53475122f374762b8df7f1c3ea33f6b
4 schema:citation sg:pub.10.1007/978-1-4612-0039-0
5 sg:pub.10.1007/s11071-008-9424-5
6 sg:pub.10.1007/s11071-008-9454-z
7 sg:pub.10.1007/s11071-009-9509-9
8 sg:pub.10.1007/s11071-009-9537-5
9 sg:pub.10.1007/s11071-009-9623-8
10 sg:pub.10.1007/s11071-010-9800-9
11 sg:pub.10.1007/s11071-011-0032-4
12 sg:pub.10.1007/s11571-010-9132-y
13 sg:pub.10.1007/s11571-011-9162-0
14 sg:pub.10.1007/s12555-011-0124-4
15 sg:pub.10.1007/s12555-011-0408-8
16 https://app.dimensions.ai/details/publication/pub.1045014127
17 https://doi.org/10.1002/0471427950
18 https://doi.org/10.1016/j.amc.2008.10.018
19 https://doi.org/10.1016/j.amc.2008.11.017
20 https://doi.org/10.1016/j.amc.2010.12.100
21 https://doi.org/10.1016/j.amc.2011.02.006
22 https://doi.org/10.1016/j.automatica.2004.12.011
23 https://doi.org/10.1016/j.automatica.2007.04.020
24 https://doi.org/10.1016/j.automatica.2011.09.029
25 https://doi.org/10.1016/j.chaos.2008.04.051
26 https://doi.org/10.1016/j.chaos.2009.03.024
27 https://doi.org/10.1016/j.neucom.2010.03.020
28 https://doi.org/10.1016/j.neunet.2005.03.015
29 https://doi.org/10.1016/j.neunet.2011.06.005
30 https://doi.org/10.1016/j.physa.2006.03.002
31 https://doi.org/10.1016/j.physa.2006.04.105
32 https://doi.org/10.1016/j.physa.2006.05.029
33 https://doi.org/10.1016/j.physleta.2005.10.033
34 https://doi.org/10.1016/j.physleta.2006.03.078
35 https://doi.org/10.1016/j.physleta.2006.10.073
36 https://doi.org/10.1016/j.physleta.2008.05.047
37 https://doi.org/10.1016/j.physleta.2010.01.007
38 https://doi.org/10.1016/s0960-0779(04)00380-7
39 https://doi.org/10.1093/imamci/dnq023
40 https://doi.org/10.1103/physrevlett.64.821
41 https://doi.org/10.1109/tcsi.2007.899627
42 https://doi.org/10.1109/tcsi.2008.916462
43 https://doi.org/10.1109/tcsi.2008.924112
44 https://doi.org/10.1109/tcsii.2009.2015388
45 https://doi.org/10.1109/tnn.2006.888373
46 https://doi.org/10.1109/tnn.2009.2033910
47 https://doi.org/10.1109/tnn.2009.2034742
48 https://doi.org/10.1109/tnn.2010.2050904
49 https://doi.org/10.1109/tnn.2010.2056383
50 https://doi.org/10.1109/tnn.2011.2128341
51 https://doi.org/10.1109/tsmcb.2005.851539
52 https://doi.org/10.1109/tsmcb.2009.2030506
53 https://doi.org/10.1109/tsmcb.2010.2040273
54 schema:datePublished 2012-09
55 schema:datePublishedReg 2012-09-01
56 schema:description This paper investigates the synchronization problem of neural networks with time-varying delay under sampled-data control in the presence of a constant input delay. Based on the extended Wirtinger inequality, a discontinuous Lyapunov functional is introduced, which makes full use of the sawtooth structure characteristic of sampling input delay. A simple and less conservative synchronization criterion is given to ensure the master systems synchronize with the slave systems by using the linear matrix inequality (LMI) approach. The design method of the desired sampled-data controller is also proposed. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.
57 schema:genre research_article
58 schema:inLanguage en
59 schema:isAccessibleForFree false
60 schema:isPartOf N12f1f5a337e0499da4553d795e68aed3
61 Nb60c4ff363724282810c57240d81e933
62 sg:journal.1040905
63 schema:name Discontinuous Lyapunov functional approach to synchronization of time-delay neural networks using sampled-data
64 schema:pagination 2021-2030
65 schema:productId N303688584096494cbd396637e8b8c0e2
66 Nbc44b936b5de49e1abf29cdc3e3807ec
67 Ne9f8e36750ee4887a18170a0341b42f8
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018196556
69 https://doi.org/10.1007/s11071-012-0404-4
70 schema:sdDatePublished 2019-04-11T02:27
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Nba24f17483a8439db9ba4ce2df442f23
73 schema:url http://link.springer.com/10.1007%2Fs11071-012-0404-4
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N12f1f5a337e0499da4553d795e68aed3 schema:issueNumber 4
78 rdf:type schema:PublicationIssue
79 N25d9f53665db4b32a7e6576daf61ee62 rdf:first sg:person.07705373347.23
80 rdf:rest N8b4b64cdf22246e0a5d5d94de1581126
81 N303688584096494cbd396637e8b8c0e2 schema:name doi
82 schema:value 10.1007/s11071-012-0404-4
83 rdf:type schema:PropertyValue
84 N8b4b64cdf22246e0a5d5d94de1581126 rdf:first sg:person.01001477736.53
85 rdf:rest Nc5270be9bc3645b3a71286d1de47061a
86 Nb53475122f374762b8df7f1c3ea33f6b rdf:first sg:person.010337770007.21
87 rdf:rest N25d9f53665db4b32a7e6576daf61ee62
88 Nb60c4ff363724282810c57240d81e933 schema:volumeNumber 69
89 rdf:type schema:PublicationVolume
90 Nba24f17483a8439db9ba4ce2df442f23 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nbc44b936b5de49e1abf29cdc3e3807ec schema:name dimensions_id
93 schema:value pub.1018196556
94 rdf:type schema:PropertyValue
95 Nc5270be9bc3645b3a71286d1de47061a rdf:first sg:person.012062531025.53
96 rdf:rest rdf:nil
97 Ne9f8e36750ee4887a18170a0341b42f8 schema:name readcube_id
98 schema:value 56b3843ebcaea78073a8d00304a52d080116fa05564b60616cc3a502b47bab33
99 rdf:type schema:PropertyValue
100 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
101 schema:name Information and Computing Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
104 schema:name Artificial Intelligence and Image Processing
105 rdf:type schema:DefinedTerm
106 sg:grant.7021378 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-012-0404-4
107 rdf:type schema:MonetaryGrant
108 sg:grant.7449158 http://pending.schema.org/fundedItem sg:pub.10.1007/s11071-012-0404-4
109 rdf:type schema:MonetaryGrant
110 sg:journal.1040905 schema:issn 0924-090X
111 1573-269X
112 schema:name Nonlinear Dynamics
113 rdf:type schema:Periodical
114 sg:person.01001477736.53 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
115 schema:familyName Su
116 schema:givenName Hongye
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001477736.53
118 rdf:type schema:Person
119 sg:person.010337770007.21 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
120 schema:familyName Wu
121 schema:givenName Zheng-Guang
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337770007.21
123 rdf:type schema:Person
124 sg:person.012062531025.53 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
125 schema:familyName Chu
126 schema:givenName Jian
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012062531025.53
128 rdf:type schema:Person
129 sg:person.07705373347.23 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
130 schema:familyName Park
131 schema:givenName Ju H.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23
133 rdf:type schema:Person
134 sg:pub.10.1007/978-1-4612-0039-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045014127
135 https://doi.org/10.1007/978-1-4612-0039-0
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s11071-008-9424-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042278174
138 https://doi.org/10.1007/s11071-008-9424-5
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11071-008-9454-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1037022088
141 https://doi.org/10.1007/s11071-008-9454-z
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11071-009-9509-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013088527
144 https://doi.org/10.1007/s11071-009-9509-9
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11071-009-9537-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027275035
147 https://doi.org/10.1007/s11071-009-9537-5
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11071-009-9623-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004431350
150 https://doi.org/10.1007/s11071-009-9623-8
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11071-010-9800-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043371531
153 https://doi.org/10.1007/s11071-010-9800-9
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11071-011-0032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042140230
156 https://doi.org/10.1007/s11071-011-0032-4
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s11571-010-9132-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1037356073
159 https://doi.org/10.1007/s11571-010-9132-y
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11571-011-9162-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037031487
162 https://doi.org/10.1007/s11571-011-9162-0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s12555-011-0124-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046189166
165 https://doi.org/10.1007/s12555-011-0124-4
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/s12555-011-0408-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017441971
168 https://doi.org/10.1007/s12555-011-0408-8
169 rdf:type schema:CreativeWork
170 https://app.dimensions.ai/details/publication/pub.1045014127 schema:CreativeWork
171 https://doi.org/10.1002/0471427950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109491859
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.amc.2008.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002685644
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.amc.2008.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019693760
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.amc.2010.12.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012680503
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.amc.2011.02.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001982772
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.automatica.2004.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002112625
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.automatica.2007.04.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008887650
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.automatica.2011.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017771027
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.chaos.2008.04.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032553346
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.chaos.2009.03.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007650940
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.neucom.2010.03.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043733861
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.neunet.2005.03.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003695671
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.neunet.2011.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010021041
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.physa.2006.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024933061
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.physa.2006.04.105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007835084
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.physa.2006.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030912317
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.physleta.2005.10.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049175428
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.physleta.2006.03.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008376384
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.physleta.2006.10.073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039927934
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.physleta.2008.05.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052682946
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.physleta.2010.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025374206
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0960-0779(04)00380-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054666764
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/imamci/dnq023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059687433
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.64.821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060800981
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1109/tcsi.2007.899627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061565946
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/tcsi.2008.916462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061566283
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/tcsi.2008.924112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061566467
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/tcsii.2009.2015388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061570038
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1109/tnn.2006.888373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717144
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1109/tnn.2009.2033910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717624
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1109/tnn.2009.2034742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717630
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1109/tnn.2010.2050904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717741
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1109/tnn.2010.2056383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717754
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1109/tnn.2011.2128341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717874
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1109/tsmcb.2005.851539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796517
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1109/tsmcb.2009.2030506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797136
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1109/tsmcb.2010.2040273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797202
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
246 schema:name National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Yuquan Campus, 310027, Hangzhou, Zhejiang, P.R. China
247 Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
250 schema:name Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...