On improved passivity criteria of uncertain neural networks with time-varying delays View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01

AUTHORS

O. M. Kwon, S. M. Lee, J. H. Park

ABSTRACT

In this paper, the problem of passivity analysis for uncertain neural networks with time-varying delays is considered. By constructing an augmented Lyapunov–Krasovskii’s functional and some novel analysis techniques, improved delay-dependent criteria for checking the passivity of the neural networks are established. The proposed criteria are represented in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Two numerical examples are included to show the superiority of our results. More... »

PAGES

1261-1271

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11071-011-0067-6

DOI

http://dx.doi.org/10.1007/s11071-011-0067-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016271754


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Chungbuk National University", 
          "id": "https://www.grid.ac/institutes/grid.254229.a", 
          "name": [
            "School of Electrical Engineering, Chungbuk National University, 52 Naesudong-ro, Heungduk-gu, 361-763, Cheongju, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "O. M.", 
        "id": "sg:person.01337000762.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337000762.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daegu University", 
          "id": "https://www.grid.ac/institutes/grid.412077.7", 
          "name": [
            "Department of Electronic Engineering, Daegu University, 712-714, Gyungsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "S. M.", 
        "id": "sg:person.07615211351.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07615211351.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yeungnam University", 
          "id": "https://www.grid.ac/institutes/grid.413028.c", 
          "name": [
            "Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "J. H.", 
        "id": "sg:person.07705373347.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.chaos.2005.04.124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000440085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nahs.2010.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004408966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rnc.1384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004921789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2008.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010222442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2009.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016305285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-009-9116-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020536705", 
          "https://doi.org/10.1007/s11063-009-9116-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-009-9116-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020536705", 
          "https://doi.org/10.1007/s11063-009-9116-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amc.2008.11.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023148037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2005.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026953399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2005.05.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026953399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035076039", 
          "https://doi.org/10.1007/bf00276493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035076039", 
          "https://doi.org/10.1007/bf00276493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.automatica.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035332924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2009.01.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044096153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-010-9147-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049928989", 
          "https://doi.org/10.1007/s11063-010-9147-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-010-9147-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049928989", 
          "https://doi.org/10.1007/s11063-010-9147-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta:20070325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056824992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2004.842050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061569047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsii.2009.2015399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061570044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2006.881488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2007.914162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2008.2002436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2008.2003980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.2007.4434619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093239835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cdc.2000.914233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094583338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556247"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-01", 
    "datePublishedReg": "2012-01-01", 
    "description": "In this paper, the problem of passivity analysis for uncertain neural networks with time-varying delays is considered. By constructing an augmented Lyapunov\u2013Krasovskii\u2019s functional and some novel analysis techniques, improved delay-dependent criteria for checking the passivity of the neural networks are established. The proposed criteria are represented in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Two numerical examples are included to show the superiority of our results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11071-011-0067-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1040905", 
        "issn": [
          "0924-090X", 
          "1573-269X"
        ], 
        "name": "Nonlinear Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "On improved passivity criteria of uncertain neural networks with time-varying delays", 
    "pagination": "1261-1271", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4d88060949d08cc054b187d4ad51e505140a9c0a57dc362f25ccb5cb60fc58f0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11071-011-0067-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016271754"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11071-011-0067-6", 
      "https://app.dimensions.ai/details/publication/pub.1016271754"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11071-011-0067-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11071-011-0067-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11071-011-0067-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11071-011-0067-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11071-011-0067-6'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11071-011-0067-6 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N31116ed7de0d44d98a416826d80ee601
4 schema:citation sg:pub.10.1007/bf00276493
5 sg:pub.10.1007/s11063-009-9116-2
6 sg:pub.10.1007/s11063-010-9147-8
7 https://doi.org/10.1002/rnc.1384
8 https://doi.org/10.1016/j.amc.2008.11.046
9 https://doi.org/10.1016/j.automatica.2008.09.010
10 https://doi.org/10.1016/j.automatica.2009.11.002
11 https://doi.org/10.1016/j.chaos.2005.04.124
12 https://doi.org/10.1016/j.nahs.2010.07.002
13 https://doi.org/10.1016/j.neucom.2009.10.010
14 https://doi.org/10.1016/j.physleta.2005.05.016
15 https://doi.org/10.1016/j.physleta.2009.01.047
16 https://doi.org/10.1049/iet-cta:20070325
17 https://doi.org/10.1109/cdc.2000.914233
18 https://doi.org/10.1109/cdc.2007.4434619
19 https://doi.org/10.1109/tcsii.2004.842050
20 https://doi.org/10.1109/tcsii.2009.2015399
21 https://doi.org/10.1109/tnn.2006.881488
22 https://doi.org/10.1109/tnn.2007.914162
23 https://doi.org/10.1109/tnn.2008.2002436
24 https://doi.org/10.1109/tnn.2008.2003980
25 https://doi.org/10.1137/1.9781611970777
26 schema:datePublished 2012-01
27 schema:datePublishedReg 2012-01-01
28 schema:description In this paper, the problem of passivity analysis for uncertain neural networks with time-varying delays is considered. By constructing an augmented Lyapunov–Krasovskii’s functional and some novel analysis techniques, improved delay-dependent criteria for checking the passivity of the neural networks are established. The proposed criteria are represented in terms of LMIs (linear matrix inequalities) which can be easily solved by various convex optimization algorithms. Two numerical examples are included to show the superiority of our results.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N8b988f63403643508958e77d473e828c
33 Nd2abee80090d45d5a809f199ff2b32ee
34 sg:journal.1040905
35 schema:name On improved passivity criteria of uncertain neural networks with time-varying delays
36 schema:pagination 1261-1271
37 schema:productId Nd8d1644450a748fd8d519cd0951b5676
38 Neb45308eb0824cda83b72963b8150fbd
39 Nf004ae11129540de811ef2d74f08417e
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016271754
41 https://doi.org/10.1007/s11071-011-0067-6
42 schema:sdDatePublished 2019-04-10T19:08
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N8b329a16fb0f4b81b5f750c198cdf647
45 schema:url http://link.springer.com/10.1007%2Fs11071-011-0067-6
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N31116ed7de0d44d98a416826d80ee601 rdf:first sg:person.01337000762.48
50 rdf:rest Ncfcdb49b769147cfb8e57a70253c05bf
51 N6383e062a6fb45dfb4a3b90664d23825 rdf:first sg:person.07705373347.23
52 rdf:rest rdf:nil
53 N8b329a16fb0f4b81b5f750c198cdf647 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N8b988f63403643508958e77d473e828c schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 Ncfcdb49b769147cfb8e57a70253c05bf rdf:first sg:person.07615211351.42
58 rdf:rest N6383e062a6fb45dfb4a3b90664d23825
59 Nd2abee80090d45d5a809f199ff2b32ee schema:volumeNumber 67
60 rdf:type schema:PublicationVolume
61 Nd8d1644450a748fd8d519cd0951b5676 schema:name readcube_id
62 schema:value 4d88060949d08cc054b187d4ad51e505140a9c0a57dc362f25ccb5cb60fc58f0
63 rdf:type schema:PropertyValue
64 Neb45308eb0824cda83b72963b8150fbd schema:name dimensions_id
65 schema:value pub.1016271754
66 rdf:type schema:PropertyValue
67 Nf004ae11129540de811ef2d74f08417e schema:name doi
68 schema:value 10.1007/s11071-011-0067-6
69 rdf:type schema:PropertyValue
70 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
71 schema:name Information and Computing Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
74 schema:name Computation Theory and Mathematics
75 rdf:type schema:DefinedTerm
76 sg:journal.1040905 schema:issn 0924-090X
77 1573-269X
78 schema:name Nonlinear Dynamics
79 rdf:type schema:Periodical
80 sg:person.01337000762.48 schema:affiliation https://www.grid.ac/institutes/grid.254229.a
81 schema:familyName Kwon
82 schema:givenName O. M.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337000762.48
84 rdf:type schema:Person
85 sg:person.07615211351.42 schema:affiliation https://www.grid.ac/institutes/grid.412077.7
86 schema:familyName Lee
87 schema:givenName S. M.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07615211351.42
89 rdf:type schema:Person
90 sg:person.07705373347.23 schema:affiliation https://www.grid.ac/institutes/grid.413028.c
91 schema:familyName Park
92 schema:givenName J. H.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07705373347.23
94 rdf:type schema:Person
95 sg:pub.10.1007/bf00276493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035076039
96 https://doi.org/10.1007/bf00276493
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s11063-009-9116-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020536705
99 https://doi.org/10.1007/s11063-009-9116-2
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11063-010-9147-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049928989
102 https://doi.org/10.1007/s11063-010-9147-8
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/rnc.1384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004921789
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.amc.2008.11.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023148037
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.automatica.2008.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010222442
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.automatica.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035332924
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.chaos.2005.04.124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000440085
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.nahs.2010.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004408966
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.neucom.2009.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016305285
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.physleta.2005.05.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026953399
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.physleta.2009.01.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044096153
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1049/iet-cta:20070325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056824992
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/cdc.2000.914233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094583338
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/cdc.2007.4434619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093239835
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/tcsii.2004.842050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061569047
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/tcsii.2009.2015399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061570044
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tnn.2006.881488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717096
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/tnn.2007.914162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717349
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tnn.2008.2002436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717420
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tnn.2008.2003980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717439
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1137/1.9781611970777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556247
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.254229.a schema:alternateName Chungbuk National University
143 schema:name School of Electrical Engineering, Chungbuk National University, 52 Naesudong-ro, Heungduk-gu, 361-763, Cheongju, Republic of Korea
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.412077.7 schema:alternateName Daegu University
146 schema:name Department of Electronic Engineering, Daegu University, 712-714, Gyungsan, Republic of Korea
147 rdf:type schema:Organization
148 https://www.grid.ac/institutes/grid.413028.c schema:alternateName Yeungnam University
149 schema:name Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, 712-749, Kyongsan, Republic of Korea
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...