Evaluation of liquefaction potential based on CPT data using random forest View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-11

AUTHORS

V. R. Kohestani, M. Hassanlourad, A. Ardakani

ABSTRACT

The prediction of liquefaction potential of soil due to an earthquake is an essential task in civil engineering. In this paper, random forest (RF) method is introduced and investigated for the prediction of seismic liquefaction potential of soil based on the cone penetration test data. RF has been proposed on the basis of classification and regression trees with “ensemble learning” strategy. The RF models were developed and validated on a relatively large dataset comprising 226 field records of liquefaction performance and cone penetration test measurements. The database contains the information about depth of potentially liquefiable soil layer (D), cone tip resistance (qc), sleeve friction ratio (Rf), effective vertical stress (σ0′), total vertical stress (σ0), maximum horizontal ground surface acceleration (αmax) and earthquake magnitude (Mw). Two RF models (Model I and Model II) are developed for predicting the occurrence and non-occurrence of liquefaction on the basis of combination of above input parameters. The results of RF models have been compared with the available artificial neural network (ANN) and support vector machine (SVM) models. It is shown that the proposed RF models provide more accurate results than the ANN and SVM models proposed in the literature. The developed RF provides a viable tool for civil engineers to determine the liquefaction potential of soil. More... »

PAGES

1079-1089

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11069-015-1893-5

DOI

http://dx.doi.org/10.1007/s11069-015-1893-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001335834


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Imam Khomeini International University", 
          "id": "https://www.grid.ac/institutes/grid.411537.5", 
          "name": [
            "Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kohestani", 
        "givenName": "V. R.", 
        "id": "sg:person.014256013401.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014256013401.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imam Khomeini International University", 
          "id": "https://www.grid.ac/institutes/grid.411537.5", 
          "name": [
            "Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassanlourad", 
        "givenName": "M.", 
        "id": "sg:person.011153157667.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153157667.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Imam Khomeini International University", 
          "id": "https://www.grid.ac/institutes/grid.411537.5", 
          "name": [
            "Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ardakani", 
        "givenName": "A.", 
        "id": "sg:person.016155226340.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155226340.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00058655", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002929950", 
          "https://doi.org/10.1007/bf00058655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2007.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006602415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/346285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008182006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/nhess-11-1-2011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013699384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11803-007-0766-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019648525", 
          "https://doi.org/10.1007/s11803-007-0766-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nag.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024609548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010933404324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024739340", 
          "https://doi.org/10.1023/a:1010933404324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.engappai.2012.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024764870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csda.2011.04.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026430407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.proeng.2014.11.205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032132638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2011.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032632615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2009.04.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041014335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007607513941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041829946", 
          "https://doi.org/10.1023/a:1007607513941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40098-013-0094-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043296654", 
          "https://doi.org/10.1007/s40098-013-0094-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2010.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044260794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-013-0615-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046093276", 
          "https://doi.org/10.1007/s11069-013-0615-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.07.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048302824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1988)114:4(389)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057586667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057588120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1090-0241(2001)127:10(817)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057618328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1090-0241(2003)129:1(66)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057618591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)gm.1943-5622.0000509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057631640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)gt.1943-5606.0000395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057632366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.709601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2004.842481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/norsig.2006.275263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093980424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/40975(318)76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096576795"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "The prediction of liquefaction potential of soil due to an earthquake is an essential task in civil engineering. In this paper, random forest (RF) method is introduced and investigated for the prediction of seismic liquefaction potential of soil based on the cone penetration test data. RF has been proposed on the basis of classification and regression trees with \u201censemble learning\u201d strategy. The RF models were developed and validated on a relatively large dataset comprising 226 field records of liquefaction performance and cone penetration test measurements. The database contains the information about depth of potentially liquefiable soil layer (D), cone tip resistance (qc), sleeve friction ratio (Rf), effective vertical stress (\u03c30\u2032), total vertical stress (\u03c30), maximum horizontal ground surface acceleration (\u03b1max) and earthquake magnitude (Mw). Two RF models (Model I and Model II) are developed for predicting the occurrence and non-occurrence of liquefaction on the basis of combination of above input parameters. The results of RF models have been compared with the available artificial neural network (ANN) and support vector machine (SVM) models. It is shown that the proposed RF models provide more accurate results than the ANN and SVM models proposed in the literature. The developed RF provides a viable tool for civil engineers to determine the liquefaction potential of soil.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11069-015-1893-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050117", 
        "issn": [
          "0921-030X", 
          "1573-0840"
        ], 
        "name": "Natural Hazards", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "79"
      }
    ], 
    "name": "Evaluation of liquefaction potential based on CPT data using random forest", 
    "pagination": "1079-1089", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "065d53e192990f4c027eb7ee741dea9f1e912ba12d87501b689a0e839e667a7d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11069-015-1893-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001335834"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11069-015-1893-5", 
      "https://app.dimensions.ai/details/publication/pub.1001335834"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000529.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11069-015-1893-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11069-015-1893-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11069-015-1893-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11069-015-1893-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11069-015-1893-5'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11069-015-1893-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N416c7f1d574c49cc85d23883f7e49222
4 schema:citation sg:pub.10.1007/bf00058655
5 sg:pub.10.1007/s11069-013-0615-0
6 sg:pub.10.1007/s11803-007-0766-7
7 sg:pub.10.1007/s40098-013-0094-y
8 sg:pub.10.1023/a:1007607513941
9 sg:pub.10.1023/a:1010933404324
10 https://doi.org/10.1002/nag.509
11 https://doi.org/10.1016/j.compgeo.2007.06.001
12 https://doi.org/10.1016/j.csda.2011.04.022
13 https://doi.org/10.1016/j.ecolmodel.2011.02.007
14 https://doi.org/10.1016/j.engappai.2012.03.006
15 https://doi.org/10.1016/j.eswa.2014.07.042
16 https://doi.org/10.1016/j.patcog.2010.08.011
17 https://doi.org/10.1016/j.proeng.2014.11.205
18 https://doi.org/10.1016/j.rse.2009.04.015
19 https://doi.org/10.1061/(asce)0733-9410(1988)114:4(389)
20 https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70)
21 https://doi.org/10.1061/(asce)1090-0241(2001)127:10(817)
22 https://doi.org/10.1061/(asce)1090-0241(2003)129:1(66)
23 https://doi.org/10.1061/(asce)gm.1943-5622.0000509
24 https://doi.org/10.1061/(asce)gt.1943-5606.0000395
25 https://doi.org/10.1061/40975(318)76
26 https://doi.org/10.1109/34.709601
27 https://doi.org/10.1109/norsig.2006.275263
28 https://doi.org/10.1109/tgrs.2004.842481
29 https://doi.org/10.1155/2013/346285
30 https://doi.org/10.5194/nhess-11-1-2011
31 schema:datePublished 2015-11
32 schema:datePublishedReg 2015-11-01
33 schema:description The prediction of liquefaction potential of soil due to an earthquake is an essential task in civil engineering. In this paper, random forest (RF) method is introduced and investigated for the prediction of seismic liquefaction potential of soil based on the cone penetration test data. RF has been proposed on the basis of classification and regression trees with “ensemble learning” strategy. The RF models were developed and validated on a relatively large dataset comprising 226 field records of liquefaction performance and cone penetration test measurements. The database contains the information about depth of potentially liquefiable soil layer (D), cone tip resistance (qc), sleeve friction ratio (Rf), effective vertical stress (σ0′), total vertical stress (σ0), maximum horizontal ground surface acceleration (αmax) and earthquake magnitude (Mw). Two RF models (Model I and Model II) are developed for predicting the occurrence and non-occurrence of liquefaction on the basis of combination of above input parameters. The results of RF models have been compared with the available artificial neural network (ANN) and support vector machine (SVM) models. It is shown that the proposed RF models provide more accurate results than the ANN and SVM models proposed in the literature. The developed RF provides a viable tool for civil engineers to determine the liquefaction potential of soil.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N6ee61d92b6a842d9bbba74b18a1b2840
38 Ndc34598f753a4c37aaebdf1a0e4a4254
39 sg:journal.1050117
40 schema:name Evaluation of liquefaction potential based on CPT data using random forest
41 schema:pagination 1079-1089
42 schema:productId N56abd599143847dfba6be71522a80d46
43 N654cee14dfac40e5970d9995dae3dadd
44 Nc70e502f73ef49b59f02a0e3ed81ec33
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001335834
46 https://doi.org/10.1007/s11069-015-1893-5
47 schema:sdDatePublished 2019-04-10T23:28
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N46baf8aa08734a70a6f968095e408269
50 schema:url http://link.springer.com/10.1007%2Fs11069-015-1893-5
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N416c7f1d574c49cc85d23883f7e49222 rdf:first sg:person.014256013401.43
55 rdf:rest N5f1a93418917416093bc65c951174ade
56 N46baf8aa08734a70a6f968095e408269 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N56abd599143847dfba6be71522a80d46 schema:name dimensions_id
59 schema:value pub.1001335834
60 rdf:type schema:PropertyValue
61 N5f1a93418917416093bc65c951174ade rdf:first sg:person.011153157667.80
62 rdf:rest Nec07062bdb49480d999fba6f1cb341fc
63 N654cee14dfac40e5970d9995dae3dadd schema:name readcube_id
64 schema:value 065d53e192990f4c027eb7ee741dea9f1e912ba12d87501b689a0e839e667a7d
65 rdf:type schema:PropertyValue
66 N6ee61d92b6a842d9bbba74b18a1b2840 schema:volumeNumber 79
67 rdf:type schema:PublicationVolume
68 Nc70e502f73ef49b59f02a0e3ed81ec33 schema:name doi
69 schema:value 10.1007/s11069-015-1893-5
70 rdf:type schema:PropertyValue
71 Ndc34598f753a4c37aaebdf1a0e4a4254 schema:issueNumber 2
72 rdf:type schema:PublicationIssue
73 Nec07062bdb49480d999fba6f1cb341fc rdf:first sg:person.016155226340.87
74 rdf:rest rdf:nil
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:journal.1050117 schema:issn 0921-030X
82 1573-0840
83 schema:name Natural Hazards
84 rdf:type schema:Periodical
85 sg:person.011153157667.80 schema:affiliation https://www.grid.ac/institutes/grid.411537.5
86 schema:familyName Hassanlourad
87 schema:givenName M.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011153157667.80
89 rdf:type schema:Person
90 sg:person.014256013401.43 schema:affiliation https://www.grid.ac/institutes/grid.411537.5
91 schema:familyName Kohestani
92 schema:givenName V. R.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014256013401.43
94 rdf:type schema:Person
95 sg:person.016155226340.87 schema:affiliation https://www.grid.ac/institutes/grid.411537.5
96 schema:familyName Ardakani
97 schema:givenName A.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016155226340.87
99 rdf:type schema:Person
100 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
101 https://doi.org/10.1007/bf00058655
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s11069-013-0615-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046093276
104 https://doi.org/10.1007/s11069-013-0615-0
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11803-007-0766-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019648525
107 https://doi.org/10.1007/s11803-007-0766-7
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s40098-013-0094-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043296654
110 https://doi.org/10.1007/s40098-013-0094-y
111 rdf:type schema:CreativeWork
112 sg:pub.10.1023/a:1007607513941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041829946
113 https://doi.org/10.1023/a:1007607513941
114 rdf:type schema:CreativeWork
115 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
116 https://doi.org/10.1023/a:1010933404324
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/nag.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024609548
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.compgeo.2007.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006602415
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.csda.2011.04.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026430407
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.ecolmodel.2011.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032632615
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.engappai.2012.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024764870
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.eswa.2014.07.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048302824
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.patcog.2010.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044260794
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.proeng.2014.11.205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032132638
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.rse.2009.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041014335
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1061/(asce)0733-9410(1988)114:4(389) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057586667
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057588120
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1061/(asce)1090-0241(2001)127:10(817) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057618328
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1061/(asce)1090-0241(2003)129:1(66) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057618591
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1061/(asce)gm.1943-5622.0000509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057631640
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1061/(asce)gt.1943-5606.0000395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057632366
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1061/40975(318)76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096576795
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/34.709601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156844
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/norsig.2006.275263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093980424
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tgrs.2004.842481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609384
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1155/2013/346285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008182006
157 rdf:type schema:CreativeWork
158 https://doi.org/10.5194/nhess-11-1-2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013699384
159 rdf:type schema:CreativeWork
160 https://www.grid.ac/institutes/grid.411537.5 schema:alternateName Imam Khomeini International University
161 schema:name Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...