Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-06

AUTHORS

Xinhua Xue, Xingguo Yang

ABSTRACT

The determination of liquefaction potential of soils induced by earthquake is a major concern and an essential criterion in the design process of the civil engineering structures. A purely empirical interpretation of the filed case histories relating to liquefaction potential is often not well constrained due to the complication associated with this problem. In this study, an integrated fuzzy neural network model, called Adaptive Neuro-Fuzzy Inference System (ANFIS), is developed for the assessment of liquefaction potential. The model is trained with large databases of liquefaction case histories. Nine parameters such as earthquake magnitude, the water table, the total vertical stress, the effective vertical stress, the depth, the peak acceleration at the ground surface, the cyclic stress ratio, the mean grain size, and the measured cone penetration test tip resistance were used as input parameters. The results revealed that the ANFIS model is a fairly promising approach for the prediction of the soil liquefaction potential and capable of representing the complex relationship between seismic properties of soils and their liquefaction potential. More... »

PAGES

901-917

Journal

TITLE

Natural Hazards

ISSUE

2

VOLUME

67

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11069-013-0615-0

DOI

http://dx.doi.org/10.1007/s11069-013-0615-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046093276


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sichuan University", 
          "id": "https://www.grid.ac/institutes/grid.13291.38", 
          "name": [
            "College of Water Resource and Hydropower, Sichuan University, No. 24 South Section\u00a01, Yihuan Road, 610065, Chengdu, Sichuan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xue", 
        "givenName": "Xinhua", 
        "id": "sg:person.015557743731.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015557743731.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sichuan University", 
          "id": "https://www.grid.ac/institutes/grid.13291.38", 
          "name": [
            "College of Water Resource and Hydropower, Sichuan University, No. 24 South Section\u00a01, Yihuan Road, 610065, Chengdu, Sichuan, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Xingguo", 
        "id": "sg:person.013556250243.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013556250243.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/0885-9507.00143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002564409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/0885-9507.00143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002564409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0267-7261(03)00066-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004626690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0267-7261(03)00066-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004626690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8667.1996.tb00309.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007688062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2005.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011379047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2009.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012738986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/t85-076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030357994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3208/sandf1972.28.2_49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034626136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2004.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038394165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2010.09.071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042810176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2003.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043300478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-444-98958-1.50017-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052920923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/02644400710718547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053045009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compgeo.2003.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053309755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1985)111:12(1425)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057586073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1986)112:3(373)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057586264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057587906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1995)121:12(856)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057587979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057588120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1090-0241(2001)127:10(817)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057618328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1061/(asce)1090-0241(2004)130:12(1314)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057618787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.1993.390281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1985.6313399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061793740"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-06", 
    "datePublishedReg": "2013-06-01", 
    "description": "The determination of liquefaction potential of soils induced by earthquake is a major concern and an essential criterion in the design process of the civil engineering structures. A purely empirical interpretation of the filed case histories relating to liquefaction potential is often not well constrained due to the complication associated with this problem. In this study, an integrated fuzzy neural network model, called Adaptive Neuro-Fuzzy Inference System (ANFIS), is developed for the assessment of liquefaction potential. The model is trained with large databases of liquefaction case histories. Nine parameters such as earthquake magnitude, the water table, the total vertical stress, the effective vertical stress, the depth, the peak acceleration at the ground surface, the cyclic stress ratio, the mean grain size, and the measured cone penetration test tip resistance were used as input parameters. The results revealed that the ANFIS model is a fairly promising approach for the prediction of the soil liquefaction potential and capable of representing the complex relationship between seismic properties of soils and their liquefaction potential.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11069-013-0615-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050117", 
        "issn": [
          "0921-030X", 
          "1573-0840"
        ], 
        "name": "Natural Hazards", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction", 
    "pagination": "901-917", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "db902f495e2c9af91b7fe671b127648afe2a4d96333fdc5add1fb92e7e3ce86a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11069-013-0615-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046093276"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11069-013-0615-0", 
      "https://app.dimensions.ai/details/publication/pub.1046093276"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000534.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11069-013-0615-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11069-013-0615-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11069-013-0615-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11069-013-0615-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11069-013-0615-0'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11069-013-0615-0 schema:about anzsrc-for:09
2 anzsrc-for:0905
3 schema:author N03dc014eaa2045baa2be7a420c2211e3
4 schema:citation https://doi.org/10.1016/b978-0-444-98958-1.50017-0
5 https://doi.org/10.1016/j.compgeo.2003.09.004
6 https://doi.org/10.1016/j.compgeo.2005.02.003
7 https://doi.org/10.1016/j.compgeo.2009.07.006
8 https://doi.org/10.1016/j.enggeo.2004.03.011
9 https://doi.org/10.1016/j.eswa.2010.09.071
10 https://doi.org/10.1016/j.jhydrol.2003.12.010
11 https://doi.org/10.1016/s0267-7261(03)00066-6
12 https://doi.org/10.1061/(asce)0733-9410(1985)111:12(1425)
13 https://doi.org/10.1061/(asce)0733-9410(1986)112:3(373)
14 https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467)
15 https://doi.org/10.1061/(asce)0733-9410(1995)121:12(856)
16 https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70)
17 https://doi.org/10.1061/(asce)1090-0241(2001)127:10(817)
18 https://doi.org/10.1061/(asce)1090-0241(2004)130:12(1314)
19 https://doi.org/10.1108/02644400710718547
20 https://doi.org/10.1109/tfuzz.1993.390281
21 https://doi.org/10.1109/tsmc.1985.6313399
22 https://doi.org/10.1111/0885-9507.00143
23 https://doi.org/10.1111/j.1467-8667.1996.tb00309.x
24 https://doi.org/10.1139/t85-076
25 https://doi.org/10.3208/sandf1972.28.2_49
26 schema:datePublished 2013-06
27 schema:datePublishedReg 2013-06-01
28 schema:description The determination of liquefaction potential of soils induced by earthquake is a major concern and an essential criterion in the design process of the civil engineering structures. A purely empirical interpretation of the filed case histories relating to liquefaction potential is often not well constrained due to the complication associated with this problem. In this study, an integrated fuzzy neural network model, called Adaptive Neuro-Fuzzy Inference System (ANFIS), is developed for the assessment of liquefaction potential. The model is trained with large databases of liquefaction case histories. Nine parameters such as earthquake magnitude, the water table, the total vertical stress, the effective vertical stress, the depth, the peak acceleration at the ground surface, the cyclic stress ratio, the mean grain size, and the measured cone penetration test tip resistance were used as input parameters. The results revealed that the ANFIS model is a fairly promising approach for the prediction of the soil liquefaction potential and capable of representing the complex relationship between seismic properties of soils and their liquefaction potential.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N231fd552ae25488097443afafb3cb4d6
33 Nad7b900c4fbe4106a035bf0ee745228a
34 sg:journal.1050117
35 schema:name Application of the adaptive neuro-fuzzy inference system for prediction of soil liquefaction
36 schema:pagination 901-917
37 schema:productId N02d5874aac82409b909109f78f0be5c9
38 N0361b628241243fab5d445ec4c878695
39 N84c28785988846d4a2dccc9b6e4f639c
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046093276
41 https://doi.org/10.1007/s11069-013-0615-0
42 schema:sdDatePublished 2019-04-10T18:24
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N934cce6ce63146b795b33335bd906c0b
45 schema:url http://link.springer.com/10.1007%2Fs11069-013-0615-0
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N02d5874aac82409b909109f78f0be5c9 schema:name doi
50 schema:value 10.1007/s11069-013-0615-0
51 rdf:type schema:PropertyValue
52 N0361b628241243fab5d445ec4c878695 schema:name readcube_id
53 schema:value db902f495e2c9af91b7fe671b127648afe2a4d96333fdc5add1fb92e7e3ce86a
54 rdf:type schema:PropertyValue
55 N03dc014eaa2045baa2be7a420c2211e3 rdf:first sg:person.015557743731.07
56 rdf:rest N41c213f9065e482a89ff398b3ed9f244
57 N231fd552ae25488097443afafb3cb4d6 schema:volumeNumber 67
58 rdf:type schema:PublicationVolume
59 N41c213f9065e482a89ff398b3ed9f244 rdf:first sg:person.013556250243.19
60 rdf:rest rdf:nil
61 N84c28785988846d4a2dccc9b6e4f639c schema:name dimensions_id
62 schema:value pub.1046093276
63 rdf:type schema:PropertyValue
64 N934cce6ce63146b795b33335bd906c0b schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 Nad7b900c4fbe4106a035bf0ee745228a schema:issueNumber 2
67 rdf:type schema:PublicationIssue
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
72 schema:name Civil Engineering
73 rdf:type schema:DefinedTerm
74 sg:journal.1050117 schema:issn 0921-030X
75 1573-0840
76 schema:name Natural Hazards
77 rdf:type schema:Periodical
78 sg:person.013556250243.19 schema:affiliation https://www.grid.ac/institutes/grid.13291.38
79 schema:familyName Yang
80 schema:givenName Xingguo
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013556250243.19
82 rdf:type schema:Person
83 sg:person.015557743731.07 schema:affiliation https://www.grid.ac/institutes/grid.13291.38
84 schema:familyName Xue
85 schema:givenName Xinhua
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015557743731.07
87 rdf:type schema:Person
88 https://doi.org/10.1016/b978-0-444-98958-1.50017-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052920923
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.compgeo.2003.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053309755
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.compgeo.2005.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011379047
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.compgeo.2009.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012738986
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.enggeo.2004.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038394165
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.eswa.2010.09.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042810176
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.jhydrol.2003.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043300478
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/s0267-7261(03)00066-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004626690
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1061/(asce)0733-9410(1985)111:12(1425) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057586073
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1061/(asce)0733-9410(1986)112:3(373) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057586264
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1061/(asce)0733-9410(1994)120:9(1467) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057587906
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1061/(asce)0733-9410(1995)121:12(856) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057587979
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1061/(asce)0733-9410(1996)122:1(70) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057588120
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1061/(asce)1090-0241(2001)127:10(817) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057618328
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1061/(asce)1090-0241(2004)130:12(1314) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057618787
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1108/02644400710718547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053045009
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/tfuzz.1993.390281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605573
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/tsmc.1985.6313399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793740
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1111/0885-9507.00143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002564409
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1111/j.1467-8667.1996.tb00309.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007688062
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1139/t85-076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030357994
129 rdf:type schema:CreativeWork
130 https://doi.org/10.3208/sandf1972.28.2_49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034626136
131 rdf:type schema:CreativeWork
132 https://www.grid.ac/institutes/grid.13291.38 schema:alternateName Sichuan University
133 schema:name College of Water Resource and Hydropower, Sichuan University, No. 24 South Section 1, Yihuan Road, 610065, Chengdu, Sichuan, People’s Republic of China
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...