Climate input parameters for real-time online risk assessment View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-06-22

AUTHORS

Richard Petritsch, Hubert Hasenauer

ABSTRACT

Risk assessment of natural hazards is often based on the actual or forecast weather situation. For estimating such climate-related risks, it is important to obtain weather data as frequently as possible. One commonly used climate interpolation routine is DAYMET, which in its current form is not able to update its database for periods of less than a year. In this paper, we report the construction of a new climate database with a standard interface and implement a framework for providing daily updated weather data for online daily weather interpolations across regions. We re-implement the interpolation routines from DAYMET to be compliant with the data handling in the new framework. We determine the optimal number of stations used in two possible interpolation routines, assess the error bounds using an independent validation dataset and compare the results with a previous validation study based on the original DAYMET implementation. Mean absolute errors are 1°C for maximum and minimum temperature, 28 mm for precipitation, 3.2 MJ/m² for solar radiation and 1 hPa for vapour pressure deficit, which is in the range of the original DAYMET routine. Finally, we provide an example application of the methodology and derive a fire danger index for a 1 km grid over Austria. More... »

PAGES

1749-1762

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11069-011-9880-y

DOI

http://dx.doi.org/10.1007/s11069-011-9880-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043582083


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Silviculture, BOKU University of Natural Resources and Life Sciences Vienna, Peter Jordan Str. 82, 1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5173.0", 
          "name": [
            "Institute of Silviculture, BOKU University of Natural Resources and Life Sciences Vienna, Peter Jordan Str. 82, 1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petritsch", 
        "givenName": "Richard", 
        "id": "sg:person.012423727047.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423727047.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Silviculture, BOKU University of Natural Resources and Life Sciences Vienna, Peter Jordan Str. 82, 1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.5173.0", 
          "name": [
            "Institute of Silviculture, BOKU University of Natural Resources and Life Sciences Vienna, Peter Jordan Str. 82, 1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasenauer", 
        "givenName": "Hubert", 
        "id": "sg:person.01041150572.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041150572.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11069-007-9114-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013450894", 
          "https://doi.org/10.1007/s11069-007-9114-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-011-9736-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033978154", 
          "https://doi.org/10.1007/s11069-011-9736-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02590167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028099084", 
          "https://doi.org/10.1007/bf02590167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-006-9106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053234820", 
          "https://doi.org/10.1007/s11069-006-9106-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005342632279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011417756", 
          "https://doi.org/10.1023/a:1005342632279"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-06-22", 
    "datePublishedReg": "2011-06-22", 
    "description": "Risk assessment of natural hazards is often based on the actual or forecast weather situation. For estimating such climate-related risks, it is important to obtain weather data as frequently as possible. One commonly used climate interpolation routine is DAYMET, which in its current form is not able to update its database for periods of less than a year. In this paper, we report the construction of a new climate database with a standard interface and implement a framework for providing daily updated weather data for online daily weather interpolations across regions. We re-implement the interpolation routines from DAYMET to be compliant with the data handling in the new framework. We determine the optimal number of stations used in two possible interpolation routines, assess the error bounds using an independent validation dataset and compare the results with a previous validation study based on the original DAYMET implementation. Mean absolute errors are 1\u00b0C for maximum and minimum temperature, 28\u00a0mm for precipitation, 3.2\u00a0MJ/m\u00b2 for solar radiation and 1\u00a0hPa for vapour pressure deficit, which is in the range of the original DAYMET routine. Finally, we provide an example application of the methodology and derive a fire danger index for a 1\u00a0km grid over Austria.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11069-011-9880-y", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1050117", 
        "issn": [
          "0921-030X", 
          "1573-0840"
        ], 
        "name": "Natural Hazards", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "70"
      }
    ], 
    "keywords": [
      "online risk assessment", 
      "interpolation routines", 
      "standard interface", 
      "data handling", 
      "example application", 
      "new framework", 
      "weather data", 
      "optimal number", 
      "absolute error", 
      "validation dataset", 
      "independent validation dataset", 
      "framework", 
      "input parameters", 
      "routines", 
      "database", 
      "dataset", 
      "error bounds", 
      "weather situations", 
      "implementation", 
      "danger index", 
      "grid", 
      "current form", 
      "Daymet", 
      "interface", 
      "data", 
      "interpolation", 
      "applications", 
      "error", 
      "methodology", 
      "fire danger indices", 
      "risk assessment", 
      "bounds", 
      "handling", 
      "natural hazards", 
      "climate database", 
      "stations", 
      "situation", 
      "construction", 
      "number", 
      "results", 
      "parameters", 
      "validation study", 
      "assessment", 
      "form", 
      "hazards", 
      "range", 
      "vapor pressure deficit", 
      "climate-related risks", 
      "years", 
      "minimum temperature", 
      "solar radiation", 
      "pressure deficit", 
      "index", 
      "region", 
      "study", 
      "risk", 
      "previous validation studies", 
      "Austria", 
      "precipitation", 
      "period", 
      "temperature", 
      "radiation", 
      "deficits", 
      "MJ/", 
      "paper"
    ], 
    "name": "Climate input parameters for real-time online risk assessment", 
    "pagination": "1749-1762", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043582083"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11069-011-9880-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11069-011-9880-y", 
      "https://app.dimensions.ai/details/publication/pub.1043582083"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_540.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11069-011-9880-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11069-011-9880-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11069-011-9880-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11069-011-9880-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11069-011-9880-y'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      94 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11069-011-9880-y schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N7382be5c7b4e4fa689bdcd9230a20757
4 schema:citation sg:pub.10.1007/bf02590167
5 sg:pub.10.1007/s11069-006-9106-x
6 sg:pub.10.1007/s11069-007-9114-5
7 sg:pub.10.1007/s11069-011-9736-5
8 sg:pub.10.1023/a:1005342632279
9 schema:datePublished 2011-06-22
10 schema:datePublishedReg 2011-06-22
11 schema:description Risk assessment of natural hazards is often based on the actual or forecast weather situation. For estimating such climate-related risks, it is important to obtain weather data as frequently as possible. One commonly used climate interpolation routine is DAYMET, which in its current form is not able to update its database for periods of less than a year. In this paper, we report the construction of a new climate database with a standard interface and implement a framework for providing daily updated weather data for online daily weather interpolations across regions. We re-implement the interpolation routines from DAYMET to be compliant with the data handling in the new framework. We determine the optimal number of stations used in two possible interpolation routines, assess the error bounds using an independent validation dataset and compare the results with a previous validation study based on the original DAYMET implementation. Mean absolute errors are 1°C for maximum and minimum temperature, 28 mm for precipitation, 3.2 MJ/m² for solar radiation and 1 hPa for vapour pressure deficit, which is in the range of the original DAYMET routine. Finally, we provide an example application of the methodology and derive a fire danger index for a 1 km grid over Austria.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N29f01a01bb314e0abb7079f177fc5899
15 Nd5e4befa11dc48929efc49928c7078d7
16 sg:journal.1050117
17 schema:keywords Austria
18 Daymet
19 MJ/
20 absolute error
21 applications
22 assessment
23 bounds
24 climate database
25 climate-related risks
26 construction
27 current form
28 danger index
29 data
30 data handling
31 database
32 dataset
33 deficits
34 error
35 error bounds
36 example application
37 fire danger indices
38 form
39 framework
40 grid
41 handling
42 hazards
43 implementation
44 independent validation dataset
45 index
46 input parameters
47 interface
48 interpolation
49 interpolation routines
50 methodology
51 minimum temperature
52 natural hazards
53 new framework
54 number
55 online risk assessment
56 optimal number
57 paper
58 parameters
59 period
60 precipitation
61 pressure deficit
62 previous validation studies
63 radiation
64 range
65 region
66 results
67 risk
68 risk assessment
69 routines
70 situation
71 solar radiation
72 standard interface
73 stations
74 study
75 temperature
76 validation dataset
77 validation study
78 vapor pressure deficit
79 weather data
80 weather situations
81 years
82 schema:name Climate input parameters for real-time online risk assessment
83 schema:pagination 1749-1762
84 schema:productId Na22beaeac6994b54b5caf476c586415c
85 Nb6f04c35eeff4f489c6a14ea19f3eeb6
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043582083
87 https://doi.org/10.1007/s11069-011-9880-y
88 schema:sdDatePublished 2022-09-02T15:54
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher Nb9615b08fd4f4e1b94d90adf1d32f570
91 schema:url https://doi.org/10.1007/s11069-011-9880-y
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N1c0cdc707516457093a6d58a8049352d rdf:first sg:person.01041150572.67
96 rdf:rest rdf:nil
97 N29f01a01bb314e0abb7079f177fc5899 schema:issueNumber 3
98 rdf:type schema:PublicationIssue
99 N7382be5c7b4e4fa689bdcd9230a20757 rdf:first sg:person.012423727047.90
100 rdf:rest N1c0cdc707516457093a6d58a8049352d
101 Na22beaeac6994b54b5caf476c586415c schema:name dimensions_id
102 schema:value pub.1043582083
103 rdf:type schema:PropertyValue
104 Nb6f04c35eeff4f489c6a14ea19f3eeb6 schema:name doi
105 schema:value 10.1007/s11069-011-9880-y
106 rdf:type schema:PropertyValue
107 Nb9615b08fd4f4e1b94d90adf1d32f570 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 Nd5e4befa11dc48929efc49928c7078d7 schema:volumeNumber 70
110 rdf:type schema:PublicationVolume
111 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
112 schema:name Earth Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
115 schema:name Atmospheric Sciences
116 rdf:type schema:DefinedTerm
117 sg:journal.1050117 schema:issn 0921-030X
118 1573-0840
119 schema:name Natural Hazards
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.01041150572.67 schema:affiliation grid-institutes:grid.5173.0
123 schema:familyName Hasenauer
124 schema:givenName Hubert
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041150572.67
126 rdf:type schema:Person
127 sg:person.012423727047.90 schema:affiliation grid-institutes:grid.5173.0
128 schema:familyName Petritsch
129 schema:givenName Richard
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012423727047.90
131 rdf:type schema:Person
132 sg:pub.10.1007/bf02590167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028099084
133 https://doi.org/10.1007/bf02590167
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s11069-006-9106-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053234820
136 https://doi.org/10.1007/s11069-006-9106-x
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s11069-007-9114-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013450894
139 https://doi.org/10.1007/s11069-007-9114-5
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s11069-011-9736-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033978154
142 https://doi.org/10.1007/s11069-011-9736-5
143 rdf:type schema:CreativeWork
144 sg:pub.10.1023/a:1005342632279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011417756
145 https://doi.org/10.1023/a:1005342632279
146 rdf:type schema:CreativeWork
147 grid-institutes:grid.5173.0 schema:alternateName Institute of Silviculture, BOKU University of Natural Resources and Life Sciences Vienna, Peter Jordan Str. 82, 1190, Vienna, Austria
148 schema:name Institute of Silviculture, BOKU University of Natural Resources and Life Sciences Vienna, Peter Jordan Str. 82, 1190, Vienna, Austria
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...