Capacitated Refueling Station Location Problem with Traffic Deviations Over Multiple Time Periods View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Mohammad Miralinaghi, Burcu B. Keskin, Yingyan Lou, Arash M. Roshandeh

ABSTRACT

In this paper, we consider the problem of locating refueling stations in a transportation network via mathematical programming. The proposed model is applicable for several alternative fuel types and is particularly suitable for hydrogen fuel. We assume that a central planner, a hydrogen manufacturer or a government agency, determines the locations of the refueling stations for a given intra-city transportation network while accounting for multi-period travel demand, nonlinear refueling station operational cost, and the deviations of travelers from their shortest routes to refuel. Incorporating demand patterns over multiple periods allows us to account for both short- and long-term variation in hydrogen refueling demand (the former due to time of day, and the latter future hydrogen fuel cell vehicle growth). It also helps us model the changes in user preferences (station and route choices) and traffic conditions over different periods. To account for refueling station operational cost in making investment decisions, we introduce a staircase marginal cost function. In addition, the model explicitly considers station and route choices of travelers as they may deviate from their original paths to refuel, incurring additional costs and affecting the number and locations of refueling stations. We formulate this problem as a multi-period, mixed-integer model with constant link travel time and staircase operational cost at refueling stations. We applied two well-known solution algorithms, branch-and-bound and Lagrangian relaxation, to solve the problem. Our analysis shows that although we are able to solve the refueling station location problem to optimality with branch-and-bound, the Lagrangian relaxation approach provides very good results with less computational time. Additionally, our numerical example of Mashhad, Iran demonstrates that locating refueling stations with considering multi-period traffic patterns (as opposed to single-period) results in minimum network-wide traffic congestion and lower user and agency costs over a planning horizon. More... »

PAGES

129-151

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11067-016-9320-3

DOI

http://dx.doi.org/10.1007/s11067-016-9320-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000092848


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Purdue University", 
          "id": "https://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "School of Civil Engineering, Purdue University, 47907, W. Lafayette, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miralinaghi", 
        "givenName": "Mohammad", 
        "id": "sg:person.012050343747.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012050343747.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sabanc\u0131 University", 
          "id": "https://www.grid.ac/institutes/grid.5334.1", 
          "name": [
            "Department of Information Systems, Statistics, and Management Science, University of Alabama, 35487, Tuscaloosa, AL, USA", 
            "School of Management, Sabanci University, Istanbul, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keskin", 
        "givenName": "Burcu B.", 
        "id": "sg:person.014450365703.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450365703.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Arizona State University", 
          "id": "https://www.grid.ac/institutes/grid.215654.1", 
          "name": [
            "Department of Civil, Environmental and Sustainable Engineering, Arizona State University, 85281, Tempe, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lou", 
        "givenName": "Yingyan", 
        "id": "sg:person.0602304672.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602304672.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Engineering and Public Works, 30009, City of Alpharetta, GA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roshandeh", 
        "givenName": "Arash M.", 
        "id": "sg:person.016217762171.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016217762171.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11067-008-9073-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001176528", 
          "https://doi.org/10.1007/s11067-008-9073-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2011.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001500803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2008.01.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002560836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11067-006-9003-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008052941", 
          "https://doi.org/10.1007/s11067-006-9003-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0041-1647(75)90030-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009523271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2991-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009846448", 
          "https://doi.org/10.1007/978-1-4757-2991-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2991-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009846448", 
          "https://doi.org/10.1007/978-1-4757-2991-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012075790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aml.2005.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014791089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2009.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015626960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/15568311003717199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021446469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2011.08.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022535434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1538-4632.2009.00744.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023928680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(83)90179-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024037679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/05695557808975181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024659704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11067-013-9221-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025328615", 
          "https://doi.org/10.1007/s11067-013-9221-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2007.08.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025444239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(94)90184-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025985789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0377-2217(94)90184-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025985789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2007.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026256095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2009.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027570928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2014.10.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028669507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11067-014-9275-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032151460", 
          "https://doi.org/10.1007/s11067-014-9275-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2006.03.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034608555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2012.11.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038867931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/0740817x.2011.635175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040482842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(96)00058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042655413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2009.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043817798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cor.2014.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044367503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6377(03)00059-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046283204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6377(03)00059-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046283204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/net.10080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052068127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.1120.1672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064715817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.1120.0430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064734478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.2014.0519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064734865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/trsc.26.3.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064735227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3141/1983-17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071043418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.6028/jres.073b.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073599556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-56082-8_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089515956", 
          "https://doi.org/10.1007/978-3-642-56082-8_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106830066", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-03", 
    "datePublishedReg": "2017-03-01", 
    "description": "In this paper, we consider the problem of locating refueling stations in a transportation network via mathematical programming. The proposed model is applicable for several alternative fuel types and is particularly suitable for hydrogen fuel. We assume that a central planner, a hydrogen manufacturer or a government agency, determines the locations of the refueling stations for a given intra-city transportation network while accounting for multi-period travel demand, nonlinear refueling station operational cost, and the deviations of travelers from their shortest routes to refuel. Incorporating demand patterns over multiple periods allows us to account for both short- and long-term variation in hydrogen refueling demand (the former due to time of day, and the latter future hydrogen fuel cell vehicle growth). It also helps us model the changes in user preferences (station and route choices) and traffic conditions over different periods. To account for refueling station operational cost in making investment decisions, we introduce a staircase marginal cost function. In addition, the model explicitly considers station and route choices of travelers as they may deviate from their original paths to refuel, incurring additional costs and affecting the number and locations of refueling stations. We formulate this problem as a multi-period, mixed-integer model with constant link travel time and staircase operational cost at refueling stations. We applied two well-known solution algorithms, branch-and-bound and Lagrangian relaxation, to solve the problem. Our analysis shows that although we are able to solve the refueling station location problem to optimality with branch-and-bound, the Lagrangian relaxation approach provides very good results with less computational time. Additionally, our numerical example of Mashhad, Iran demonstrates that locating refueling stations with considering multi-period traffic patterns (as opposed to single-period) results in minimum network-wide traffic congestion and lower user and agency costs over a planning horizon.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11067-016-9320-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136451", 
        "issn": [
          "1566-113X", 
          "1572-9427"
        ], 
        "name": "Networks and Spatial Economics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "name": "Capacitated Refueling Station Location Problem with Traffic Deviations Over Multiple Time Periods", 
    "pagination": "129-151", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "00711ec7c378379ef520e97fa08d8789b534be8eccd553f2abeb39c77f989b18"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11067-016-9320-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000092848"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11067-016-9320-3", 
      "https://app.dimensions.ai/details/publication/pub.1000092848"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000578.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11067-016-9320-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11067-016-9320-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11067-016-9320-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11067-016-9320-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11067-016-9320-3'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11067-016-9320-3 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author Nd62ded000c4b4c728da602d63552123a
4 schema:citation sg:pub.10.1007/978-1-4757-2991-7
5 sg:pub.10.1007/978-3-642-56082-8_3
6 sg:pub.10.1007/s11067-006-9003-6
7 sg:pub.10.1007/s11067-008-9073-8
8 sg:pub.10.1007/s11067-013-9221-7
9 sg:pub.10.1007/s11067-014-9275-1
10 https://app.dimensions.ai/details/publication/pub.1106830066
11 https://doi.org/10.1002/net.10080
12 https://doi.org/10.1016/0041-1647(75)90030-1
13 https://doi.org/10.1016/0377-2217(83)90179-0
14 https://doi.org/10.1016/0377-2217(94)90184-8
15 https://doi.org/10.1016/j.aml.2005.05.008
16 https://doi.org/10.1016/j.cor.2014.07.017
17 https://doi.org/10.1016/j.ejor.2006.03.026
18 https://doi.org/10.1016/j.ejor.2007.08.044
19 https://doi.org/10.1016/j.ejor.2009.09.032
20 https://doi.org/10.1016/j.ejor.2012.11.033
21 https://doi.org/10.1016/j.ejor.2014.10.029
22 https://doi.org/10.1016/j.eswa.2014.11.010
23 https://doi.org/10.1016/j.ijhydene.2007.05.010
24 https://doi.org/10.1016/j.ijhydene.2008.01.040
25 https://doi.org/10.1016/j.ijhydene.2011.08.005
26 https://doi.org/10.1016/j.ijhydene.2011.08.108
27 https://doi.org/10.1016/j.tre.2009.03.002
28 https://doi.org/10.1016/j.tre.2009.12.001
29 https://doi.org/10.1016/s0167-6377(03)00059-2
30 https://doi.org/10.1016/s0377-2217(96)00058-6
31 https://doi.org/10.1080/05695557808975181
32 https://doi.org/10.1080/0740817x.2011.635175
33 https://doi.org/10.1080/15568311003717199
34 https://doi.org/10.1111/j.1538-4632.2009.00744.x
35 https://doi.org/10.1287/mnsc.1120.1672
36 https://doi.org/10.1287/trsc.1120.0430
37 https://doi.org/10.1287/trsc.2014.0519
38 https://doi.org/10.1287/trsc.26.3.201
39 https://doi.org/10.3141/1983-17
40 https://doi.org/10.6028/jres.073b.010
41 schema:datePublished 2017-03
42 schema:datePublishedReg 2017-03-01
43 schema:description In this paper, we consider the problem of locating refueling stations in a transportation network via mathematical programming. The proposed model is applicable for several alternative fuel types and is particularly suitable for hydrogen fuel. We assume that a central planner, a hydrogen manufacturer or a government agency, determines the locations of the refueling stations for a given intra-city transportation network while accounting for multi-period travel demand, nonlinear refueling station operational cost, and the deviations of travelers from their shortest routes to refuel. Incorporating demand patterns over multiple periods allows us to account for both short- and long-term variation in hydrogen refueling demand (the former due to time of day, and the latter future hydrogen fuel cell vehicle growth). It also helps us model the changes in user preferences (station and route choices) and traffic conditions over different periods. To account for refueling station operational cost in making investment decisions, we introduce a staircase marginal cost function. In addition, the model explicitly considers station and route choices of travelers as they may deviate from their original paths to refuel, incurring additional costs and affecting the number and locations of refueling stations. We formulate this problem as a multi-period, mixed-integer model with constant link travel time and staircase operational cost at refueling stations. We applied two well-known solution algorithms, branch-and-bound and Lagrangian relaxation, to solve the problem. Our analysis shows that although we are able to solve the refueling station location problem to optimality with branch-and-bound, the Lagrangian relaxation approach provides very good results with less computational time. Additionally, our numerical example of Mashhad, Iran demonstrates that locating refueling stations with considering multi-period traffic patterns (as opposed to single-period) results in minimum network-wide traffic congestion and lower user and agency costs over a planning horizon.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf N46d3972bfb524ae4a5015e01f5e9a0d8
48 N4f055e0724da42f6a3a7788e5794c5ab
49 sg:journal.1136451
50 schema:name Capacitated Refueling Station Location Problem with Traffic Deviations Over Multiple Time Periods
51 schema:pagination 129-151
52 schema:productId Ncfd1c112aefd4468ae0af5c4448b6cb5
53 Nd1f3d8e034524bf69d41913280589b86
54 Nd50b39333c31439c811f0bd801db7422
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000092848
56 https://doi.org/10.1007/s11067-016-9320-3
57 schema:sdDatePublished 2019-04-10T20:56
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N452716c915ba49c989b6afdf08886090
60 schema:url http://link.springer.com/10.1007%2Fs11067-016-9320-3
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N452716c915ba49c989b6afdf08886090 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N46d3972bfb524ae4a5015e01f5e9a0d8 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 N4f055e0724da42f6a3a7788e5794c5ab schema:volumeNumber 17
69 rdf:type schema:PublicationVolume
70 N5627c2dfcaf34c56b29f9f41347559fd schema:name Department of Engineering and Public Works, 30009, City of Alpharetta, GA, USA
71 rdf:type schema:Organization
72 N990587c82a0f4a9b8586a15677304b8b rdf:first sg:person.014450365703.49
73 rdf:rest Nfde140ef3d3149f3ab9e61939cbe6547
74 Na26a882fadc04ed5a05eaf687ec50fb5 rdf:first sg:person.016217762171.27
75 rdf:rest rdf:nil
76 Ncfd1c112aefd4468ae0af5c4448b6cb5 schema:name dimensions_id
77 schema:value pub.1000092848
78 rdf:type schema:PropertyValue
79 Nd1f3d8e034524bf69d41913280589b86 schema:name readcube_id
80 schema:value 00711ec7c378379ef520e97fa08d8789b534be8eccd553f2abeb39c77f989b18
81 rdf:type schema:PropertyValue
82 Nd50b39333c31439c811f0bd801db7422 schema:name doi
83 schema:value 10.1007/s11067-016-9320-3
84 rdf:type schema:PropertyValue
85 Nd62ded000c4b4c728da602d63552123a rdf:first sg:person.012050343747.13
86 rdf:rest N990587c82a0f4a9b8586a15677304b8b
87 Nfde140ef3d3149f3ab9e61939cbe6547 rdf:first sg:person.0602304672.06
88 rdf:rest Na26a882fadc04ed5a05eaf687ec50fb5
89 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
90 schema:name Economics
91 rdf:type schema:DefinedTerm
92 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
93 schema:name Applied Economics
94 rdf:type schema:DefinedTerm
95 sg:journal.1136451 schema:issn 1566-113X
96 1572-9427
97 schema:name Networks and Spatial Economics
98 rdf:type schema:Periodical
99 sg:person.012050343747.13 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
100 schema:familyName Miralinaghi
101 schema:givenName Mohammad
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012050343747.13
103 rdf:type schema:Person
104 sg:person.014450365703.49 schema:affiliation https://www.grid.ac/institutes/grid.5334.1
105 schema:familyName Keskin
106 schema:givenName Burcu B.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014450365703.49
108 rdf:type schema:Person
109 sg:person.016217762171.27 schema:affiliation N5627c2dfcaf34c56b29f9f41347559fd
110 schema:familyName Roshandeh
111 schema:givenName Arash M.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016217762171.27
113 rdf:type schema:Person
114 sg:person.0602304672.06 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
115 schema:familyName Lou
116 schema:givenName Yingyan
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602304672.06
118 rdf:type schema:Person
119 sg:pub.10.1007/978-1-4757-2991-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009846448
120 https://doi.org/10.1007/978-1-4757-2991-7
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-3-642-56082-8_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089515956
123 https://doi.org/10.1007/978-3-642-56082-8_3
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11067-006-9003-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008052941
126 https://doi.org/10.1007/s11067-006-9003-6
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s11067-008-9073-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001176528
129 https://doi.org/10.1007/s11067-008-9073-8
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11067-013-9221-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025328615
132 https://doi.org/10.1007/s11067-013-9221-7
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s11067-014-9275-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032151460
135 https://doi.org/10.1007/s11067-014-9275-1
136 rdf:type schema:CreativeWork
137 https://app.dimensions.ai/details/publication/pub.1106830066 schema:CreativeWork
138 https://doi.org/10.1002/net.10080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052068127
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0041-1647(75)90030-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009523271
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0377-2217(83)90179-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024037679
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0377-2217(94)90184-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025985789
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.aml.2005.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014791089
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.cor.2014.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044367503
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.ejor.2006.03.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034608555
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.ejor.2007.08.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025444239
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.ejor.2009.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027570928
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ejor.2012.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038867931
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ejor.2014.10.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028669507
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.eswa.2014.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012075790
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.ijhydene.2007.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026256095
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ijhydene.2008.01.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002560836
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.ijhydene.2011.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001500803
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.ijhydene.2011.08.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022535434
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.tre.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043817798
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.tre.2009.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015626960
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0167-6377(03)00059-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046283204
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0377-2217(96)00058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042655413
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1080/05695557808975181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024659704
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1080/0740817x.2011.635175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040482842
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/15568311003717199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021446469
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1111/j.1538-4632.2009.00744.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023928680
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1287/mnsc.1120.1672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064715817
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1287/trsc.1120.0430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734478
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1287/trsc.2014.0519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064734865
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1287/trsc.26.3.201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064735227
193 rdf:type schema:CreativeWork
194 https://doi.org/10.3141/1983-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071043418
195 rdf:type schema:CreativeWork
196 https://doi.org/10.6028/jres.073b.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073599556
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.169077.e schema:alternateName Purdue University
199 schema:name School of Civil Engineering, Purdue University, 47907, W. Lafayette, IN, USA
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.215654.1 schema:alternateName Arizona State University
202 schema:name Department of Civil, Environmental and Sustainable Engineering, Arizona State University, 85281, Tempe, AZ, USA
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.5334.1 schema:alternateName Sabancı University
205 schema:name Department of Information Systems, Statistics, and Management Science, University of Alabama, 35487, Tuscaloosa, AL, USA
206 School of Management, Sabanci University, Istanbul, Turkey
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...