Global Exponential Synchronization of Memristive Competitive Neural Networks with Time-Varying Delay via Nonlinear Control View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Shuqing Gong, Shaofu Yang, Zhenyuan Guo, Tingwen Huang

ABSTRACT

This paper investigates the synchronization problem of memristive competitive neural networks (MCNNs) with time-varying delay. Firstly, a novel nonlinear controller with a linear diffusive term and a discontinuous sign function term is introduced. Then, by using this controller, several sufficient conditions for global exponential synchronization of MCNNs are presented based on Lyapunov stability theory and some inequality techniques. Finally, two illustrative examples are provided to substantiate the effectiveness of the obtained theoretical results. More... »

PAGES

103-119

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11063-017-9777-1

DOI

http://dx.doi.org/10.1007/s11063-017-9777-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101173983


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "College of Mathematics and Econometrics, Hunan University, 410082, Changsha, Hunan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gong", 
        "givenName": "Shuqing", 
        "id": "sg:person.016557417620.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016557417620.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southeast University", 
          "id": "https://www.grid.ac/institutes/grid.263826.b", 
          "name": [
            "School of Computer Science and Engineering, Southeast University, 211189, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Shaofu", 
        "id": "sg:person.014452652537.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014452652537.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunan University", 
          "id": "https://www.grid.ac/institutes/grid.67293.39", 
          "name": [
            "College of Mathematics and Econometrics, Hunan University, 410082, Changsha, Hunan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Zhenyuan", 
        "id": "sg:person.013614146602.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013614146602.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University at Qatar", 
          "id": "https://www.grid.ac/institutes/grid.412392.f", 
          "name": [
            "Science Program, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Tingwen", 
        "id": "sg:person.0717374253.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717374253.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neunet.2016.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000063256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cnsns.2012.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000742804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2003.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003443609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2014.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004714194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02429870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005198005", 
          "https://doi.org/10.1007/bf02429870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02429870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005198005", 
          "https://doi.org/10.1007/bf02429870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2014.05.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005307970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1996.8.8.1731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007511672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-014-1598-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013271476", 
          "https://doi.org/10.1007/s00521-014-1598-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cplx.20103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017560453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cplx.20103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017560453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-011-0626-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021243568", 
          "https://doi.org/10.1007/s00521-011-0626-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2013.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028579858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1999)056<4183:coonas>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033913286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-011-0116-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035545577", 
          "https://doi.org/10.1007/s11071-011-0116-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2009.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040664698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2016.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041002287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4966177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051037084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2011.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051388735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052714473", 
          "https://doi.org/10.1038/nature06932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.11.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053208228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/81.788817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061236966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jas.2016.7451099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061276495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsi.2011.2161360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061567150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tct.1971.1083337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2010.2068560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2011.2164934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061717940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2013.2280556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2014.2354432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1983.6313075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061793454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.2014.2343911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061794239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140991820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062872910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218001417500227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062950500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218126610006141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062951901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127409025031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062955781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.740.238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071994608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cta.2016.1659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085330860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icicip.2016.7885906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093968917"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "This paper investigates the synchronization problem of memristive competitive neural networks (MCNNs) with time-varying delay. Firstly, a novel nonlinear controller with a linear diffusive term and a discontinuous sign function term is introduced. Then, by using this controller, several sufficient conditions for global exponential synchronization of MCNNs are presented based on Lyapunov stability theory and some inequality techniques. Finally, two illustrative examples are provided to substantiate the effectiveness of the obtained theoretical results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11063-017-9777-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1132792", 
        "issn": [
          "1370-4621", 
          "1573-773X"
        ], 
        "name": "Neural Processing Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Global Exponential Synchronization of Memristive Competitive Neural Networks with Time-Varying Delay via Nonlinear Control", 
    "pagination": "103-119", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "47a7a1d81cdd8f454ac19903ce5de85c2cb646e72417895b35b38e6bebd78fe2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11063-017-9777-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101173983"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11063-017-9777-1", 
      "https://app.dimensions.ai/details/publication/pub.1101173983"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113667_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11063-017-9777-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11063-017-9777-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11063-017-9777-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11063-017-9777-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11063-017-9777-1'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11063-017-9777-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9afec1585f0b439ca4c52a43a92ff7e0
4 schema:citation sg:pub.10.1007/bf02429870
5 sg:pub.10.1007/s00521-011-0626-2
6 sg:pub.10.1007/s00521-014-1598-9
7 sg:pub.10.1007/s11071-011-0116-1
8 sg:pub.10.1038/nature06932
9 https://doi.org/10.1002/cplx.20103
10 https://doi.org/10.1016/j.camwa.2016.11.010
11 https://doi.org/10.1016/j.cnsns.2012.01.021
12 https://doi.org/10.1016/j.neucom.2009.08.004
13 https://doi.org/10.1016/j.neucom.2011.09.032
14 https://doi.org/10.1016/j.neucom.2015.11.094
15 https://doi.org/10.1016/j.neunet.2003.08.007
16 https://doi.org/10.1016/j.neunet.2013.11.016
17 https://doi.org/10.1016/j.neunet.2014.02.003
18 https://doi.org/10.1016/j.neunet.2014.05.002
19 https://doi.org/10.1016/j.neunet.2016.04.002
20 https://doi.org/10.1049/iet-cta.2016.1659
21 https://doi.org/10.1063/1.4966177
22 https://doi.org/10.1109/81.788817
23 https://doi.org/10.1109/icicip.2016.7885906
24 https://doi.org/10.1109/jas.2016.7451099
25 https://doi.org/10.1109/tcsi.2011.2161360
26 https://doi.org/10.1109/tct.1971.1083337
27 https://doi.org/10.1109/tnn.2010.2068560
28 https://doi.org/10.1109/tnn.2011.2164934
29 https://doi.org/10.1109/tnnls.2013.2280556
30 https://doi.org/10.1109/tnnls.2014.2354432
31 https://doi.org/10.1109/tsmc.1983.6313075
32 https://doi.org/10.1109/tsmc.2014.2343911
33 https://doi.org/10.1137/140991820
34 https://doi.org/10.1142/s0218001417500227
35 https://doi.org/10.1142/s0218126610006141
36 https://doi.org/10.1142/s0218127409025031
37 https://doi.org/10.1162/neco.1996.8.8.1731
38 https://doi.org/10.1175/1520-0469(1999)056<4183:coonas>2.0.co;2
39 https://doi.org/10.4028/www.scientific.net/amm.740.238
40 schema:datePublished 2019-02
41 schema:datePublishedReg 2019-02-01
42 schema:description This paper investigates the synchronization problem of memristive competitive neural networks (MCNNs) with time-varying delay. Firstly, a novel nonlinear controller with a linear diffusive term and a discontinuous sign function term is introduced. Then, by using this controller, several sufficient conditions for global exponential synchronization of MCNNs are presented based on Lyapunov stability theory and some inequality techniques. Finally, two illustrative examples are provided to substantiate the effectiveness of the obtained theoretical results.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N11dd932e781141159bd92f4a55f86e0d
47 Ncce60b1e4c454ec5aeaefb75948486cb
48 sg:journal.1132792
49 schema:name Global Exponential Synchronization of Memristive Competitive Neural Networks with Time-Varying Delay via Nonlinear Control
50 schema:pagination 103-119
51 schema:productId N0fdbdd6d3b244a0ba072d9279f97f4c3
52 N5f1261b9d2d34cd4aa15eb30a3c04f59
53 N6fe385d684204d8196ab8fae849c3f93
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101173983
55 https://doi.org/10.1007/s11063-017-9777-1
56 schema:sdDatePublished 2019-04-11T10:35
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Na182ad0f45ce47468a9fcea6dc9fd218
59 schema:url https://link.springer.com/10.1007%2Fs11063-017-9777-1
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N06e29b57afe64c3c9c27b076d719ae01 rdf:first sg:person.0717374253.17
64 rdf:rest rdf:nil
65 N0fdbdd6d3b244a0ba072d9279f97f4c3 schema:name doi
66 schema:value 10.1007/s11063-017-9777-1
67 rdf:type schema:PropertyValue
68 N101110d9346d40638f9b3d0bf420934e rdf:first sg:person.013614146602.56
69 rdf:rest N06e29b57afe64c3c9c27b076d719ae01
70 N11dd932e781141159bd92f4a55f86e0d schema:issueNumber 1
71 rdf:type schema:PublicationIssue
72 N5f1261b9d2d34cd4aa15eb30a3c04f59 schema:name dimensions_id
73 schema:value pub.1101173983
74 rdf:type schema:PropertyValue
75 N6fe385d684204d8196ab8fae849c3f93 schema:name readcube_id
76 schema:value 47a7a1d81cdd8f454ac19903ce5de85c2cb646e72417895b35b38e6bebd78fe2
77 rdf:type schema:PropertyValue
78 N9afec1585f0b439ca4c52a43a92ff7e0 rdf:first sg:person.016557417620.18
79 rdf:rest Nee3764f342bb440aa8db08e37d40b192
80 Na182ad0f45ce47468a9fcea6dc9fd218 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Ncce60b1e4c454ec5aeaefb75948486cb schema:volumeNumber 49
83 rdf:type schema:PublicationVolume
84 Nee3764f342bb440aa8db08e37d40b192 rdf:first sg:person.014452652537.77
85 rdf:rest N101110d9346d40638f9b3d0bf420934e
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
90 schema:name Artificial Intelligence and Image Processing
91 rdf:type schema:DefinedTerm
92 sg:journal.1132792 schema:issn 1370-4621
93 1573-773X
94 schema:name Neural Processing Letters
95 rdf:type schema:Periodical
96 sg:person.013614146602.56 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
97 schema:familyName Guo
98 schema:givenName Zhenyuan
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013614146602.56
100 rdf:type schema:Person
101 sg:person.014452652537.77 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
102 schema:familyName Yang
103 schema:givenName Shaofu
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014452652537.77
105 rdf:type schema:Person
106 sg:person.016557417620.18 schema:affiliation https://www.grid.ac/institutes/grid.67293.39
107 schema:familyName Gong
108 schema:givenName Shuqing
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016557417620.18
110 rdf:type schema:Person
111 sg:person.0717374253.17 schema:affiliation https://www.grid.ac/institutes/grid.412392.f
112 schema:familyName Huang
113 schema:givenName Tingwen
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0717374253.17
115 rdf:type schema:Person
116 sg:pub.10.1007/bf02429870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005198005
117 https://doi.org/10.1007/bf02429870
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s00521-011-0626-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021243568
120 https://doi.org/10.1007/s00521-011-0626-2
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s00521-014-1598-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013271476
123 https://doi.org/10.1007/s00521-014-1598-9
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s11071-011-0116-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035545577
126 https://doi.org/10.1007/s11071-011-0116-1
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/nature06932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052714473
129 https://doi.org/10.1038/nature06932
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/cplx.20103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017560453
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.camwa.2016.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041002287
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.cnsns.2012.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000742804
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.neucom.2009.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040664698
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.neucom.2011.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051388735
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.neucom.2015.11.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053208228
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.neunet.2003.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003443609
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.neunet.2013.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028579858
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.neunet.2014.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004714194
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.neunet.2014.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005307970
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.neunet.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000063256
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1049/iet-cta.2016.1659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085330860
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.4966177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051037084
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/81.788817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061236966
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/icicip.2016.7885906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093968917
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/jas.2016.7451099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061276495
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tcsi.2011.2161360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061567150
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tct.1971.1083337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579020
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tnn.2010.2068560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717776
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tnn.2011.2164934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717940
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tnnls.2013.2280556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718408
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tnnls.2014.2354432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718675
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tsmc.1983.6313075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061793454
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tsmc.2014.2343911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061794239
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1137/140991820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062872910
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1142/s0218001417500227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062950500
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1142/s0218126610006141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062951901
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1142/s0218127409025031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062955781
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1162/neco.1996.8.8.1731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007511672
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1175/1520-0469(1999)056<4183:coonas>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033913286
190 rdf:type schema:CreativeWork
191 https://doi.org/10.4028/www.scientific.net/amm.740.238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071994608
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.263826.b schema:alternateName Southeast University
194 schema:name School of Computer Science and Engineering, Southeast University, 211189, Nanjing, China
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.412392.f schema:alternateName Texas A&M University at Qatar
197 schema:name Science Program, Texas A&M University at Qatar, PO Box 23874, Doha, Qatar
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.67293.39 schema:alternateName Hunan University
200 schema:name College of Mathematics and Econometrics, Hunan University, 410082, Changsha, Hunan, China
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...