Learning to Rank with Extreme Learning Machine View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-04

AUTHORS

Weiwei Zong, Guang-Bin Huang

ABSTRACT

Relevance ranking has been a popular and interesting topic over the years, which has a large variety of applications. A number of machine learning techniques were successfully applied as the learning algorithms for relevance ranking, including neural network, regularized least square, support vector machine and so on. From machine learning point of view, extreme learning machine actually provides a unified framework where the aforementioned algorithms can be considered as special cases. In this paper, pointwise ELM and pairwise ELM are proposed to learn relevance ranking problems for the first time. In particular, ELM type of linear random node is newly proposed together with kernel version of ELM to be linear as well. The famous publicly available dataset collection LETOR is tested to compare ELM-based ranking algorithms with state-of-art linear ranking algorithms. More... »

PAGES

155-166

References to SciGraph publications

  • 2011-06. Extreme learning machines: a survey in INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
  • 1999-06. Least Squares Support Vector Machine Classifiers in NEURAL PROCESSING LETTERS
  • 2010-08. LETOR: A benchmark collection for research on learning to rank for information retrieval in INFORMATION RETRIEVAL JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11063-013-9295-8

    DOI

    http://dx.doi.org/10.1007/s11063-013-9295-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043864868


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Nanyang Technological University", 
              "id": "https://www.grid.ac/institutes/grid.59025.3b", 
              "name": [
                "School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zong", 
            "givenName": "Weiwei", 
            "id": "sg:person.014525510707.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525510707.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanyang Technological University", 
              "id": "https://www.grid.ac/institutes/grid.59025.3b", 
              "name": [
                "School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Guang-Bin", 
            "id": "sg:person.0730150332.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730150332.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/775047.775067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002194678"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2011.2168604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006047450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2007.02.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013207250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2010.02.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015090992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1018628609742", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025353016", 
              "https://doi.org/10.1023/a:1018628609742"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1102351.1102363", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025364122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1008992.1009006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027129423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13042-011-0019-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031892380", 
              "https://doi.org/10.1007/s13042-011-0019-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1277741.1277808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033673639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2007.10.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035637386"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neucom.2005.12.126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038265102"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10791-009-9123-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040052022", 
              "https://doi.org/10.1007/s10791-009-9123-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10791-009-9123-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040052022", 
              "https://doi.org/10.1007/s10791-009-9123-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tit.2008.929939", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061652175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2006.875977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717036"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tnn.2006.875977", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061717036"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-04", 
        "datePublishedReg": "2014-04-01", 
        "description": "Relevance ranking has been a popular and interesting topic over the years, which has a large variety of applications. A number of machine learning techniques were successfully applied as the learning algorithms for relevance ranking, including neural network, regularized least square, support vector machine and so on. From machine learning point of view, extreme learning machine actually provides a unified framework where the aforementioned algorithms can be considered as special cases. In this paper, pointwise ELM and pairwise ELM are proposed to learn relevance ranking problems for the first time. In particular, ELM type of linear random node is newly proposed together with kernel version of ELM to be linear as well. The famous publicly available dataset collection LETOR is tested to compare ELM-based ranking algorithms with state-of-art linear ranking algorithms.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11063-013-9295-8", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1132792", 
            "issn": [
              "1370-4621", 
              "1573-773X"
            ], 
            "name": "Neural Processing Letters", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "39"
          }
        ], 
        "name": "Learning to Rank with Extreme Learning Machine", 
        "pagination": "155-166", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d0f22dd8224101b1bda14c696355cbccae8c199d7b17d8a10349c043cdd07bd1"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11063-013-9295-8"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043864868"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11063-013-9295-8", 
          "https://app.dimensions.ai/details/publication/pub.1043864868"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T13:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000534.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11063-013-9295-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11063-013-9295-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11063-013-9295-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11063-013-9295-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11063-013-9295-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    113 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11063-013-9295-8 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nf93fd59ef4c944d88698b7975cbcec78
    4 schema:citation sg:pub.10.1007/s10791-009-9123-y
    5 sg:pub.10.1007/s13042-011-0019-y
    6 sg:pub.10.1023/a:1018628609742
    7 https://doi.org/10.1016/j.neucom.2005.12.126
    8 https://doi.org/10.1016/j.neucom.2007.02.009
    9 https://doi.org/10.1016/j.neucom.2007.10.008
    10 https://doi.org/10.1016/j.neucom.2010.02.019
    11 https://doi.org/10.1109/tit.2008.929939
    12 https://doi.org/10.1109/tnn.2006.875977
    13 https://doi.org/10.1109/tsmcb.2011.2168604
    14 https://doi.org/10.1145/1008992.1009006
    15 https://doi.org/10.1145/1102351.1102363
    16 https://doi.org/10.1145/1277741.1277808
    17 https://doi.org/10.1145/775047.775067
    18 schema:datePublished 2014-04
    19 schema:datePublishedReg 2014-04-01
    20 schema:description Relevance ranking has been a popular and interesting topic over the years, which has a large variety of applications. A number of machine learning techniques were successfully applied as the learning algorithms for relevance ranking, including neural network, regularized least square, support vector machine and so on. From machine learning point of view, extreme learning machine actually provides a unified framework where the aforementioned algorithms can be considered as special cases. In this paper, pointwise ELM and pairwise ELM are proposed to learn relevance ranking problems for the first time. In particular, ELM type of linear random node is newly proposed together with kernel version of ELM to be linear as well. The famous publicly available dataset collection LETOR is tested to compare ELM-based ranking algorithms with state-of-art linear ranking algorithms.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N1e9d0d5e79e64bf790c433054305f14b
    25 Ne197eeb017414a5bac6e035fc19a3a9f
    26 sg:journal.1132792
    27 schema:name Learning to Rank with Extreme Learning Machine
    28 schema:pagination 155-166
    29 schema:productId N25fbc3039df644d9a5f9276d4c15b2a8
    30 Nb5a6714fa1cd4154accf02ae536dae0c
    31 Nf749d08768fd419e88ab2b49ae3a62b9
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043864868
    33 https://doi.org/10.1007/s11063-013-9295-8
    34 schema:sdDatePublished 2019-04-10T13:22
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N6b5dafbc604844b1971729c339b0ee5b
    37 schema:url http://link.springer.com/10.1007%2Fs11063-013-9295-8
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N1e9d0d5e79e64bf790c433054305f14b schema:issueNumber 2
    42 rdf:type schema:PublicationIssue
    43 N25fbc3039df644d9a5f9276d4c15b2a8 schema:name doi
    44 schema:value 10.1007/s11063-013-9295-8
    45 rdf:type schema:PropertyValue
    46 N6b5dafbc604844b1971729c339b0ee5b schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 Nb5a6714fa1cd4154accf02ae536dae0c schema:name readcube_id
    49 schema:value d0f22dd8224101b1bda14c696355cbccae8c199d7b17d8a10349c043cdd07bd1
    50 rdf:type schema:PropertyValue
    51 Ne1384919d55b4f31b20308d26945b40e rdf:first sg:person.0730150332.23
    52 rdf:rest rdf:nil
    53 Ne197eeb017414a5bac6e035fc19a3a9f schema:volumeNumber 39
    54 rdf:type schema:PublicationVolume
    55 Nf749d08768fd419e88ab2b49ae3a62b9 schema:name dimensions_id
    56 schema:value pub.1043864868
    57 rdf:type schema:PropertyValue
    58 Nf93fd59ef4c944d88698b7975cbcec78 rdf:first sg:person.014525510707.53
    59 rdf:rest Ne1384919d55b4f31b20308d26945b40e
    60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    61 schema:name Information and Computing Sciences
    62 rdf:type schema:DefinedTerm
    63 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    64 schema:name Artificial Intelligence and Image Processing
    65 rdf:type schema:DefinedTerm
    66 sg:journal.1132792 schema:issn 1370-4621
    67 1573-773X
    68 schema:name Neural Processing Letters
    69 rdf:type schema:Periodical
    70 sg:person.014525510707.53 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
    71 schema:familyName Zong
    72 schema:givenName Weiwei
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525510707.53
    74 rdf:type schema:Person
    75 sg:person.0730150332.23 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
    76 schema:familyName Huang
    77 schema:givenName Guang-Bin
    78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730150332.23
    79 rdf:type schema:Person
    80 sg:pub.10.1007/s10791-009-9123-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040052022
    81 https://doi.org/10.1007/s10791-009-9123-y
    82 rdf:type schema:CreativeWork
    83 sg:pub.10.1007/s13042-011-0019-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1031892380
    84 https://doi.org/10.1007/s13042-011-0019-y
    85 rdf:type schema:CreativeWork
    86 sg:pub.10.1023/a:1018628609742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025353016
    87 https://doi.org/10.1023/a:1018628609742
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/j.neucom.2005.12.126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038265102
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1016/j.neucom.2007.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013207250
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1016/j.neucom.2007.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035637386
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1016/j.neucom.2010.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015090992
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1109/tit.2008.929939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061652175
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1109/tnn.2006.875977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061717036
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1109/tsmcb.2011.2168604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006047450
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1145/1008992.1009006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027129423
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1145/1102351.1102363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025364122
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1145/1277741.1277808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033673639
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1145/775047.775067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002194678
    110 rdf:type schema:CreativeWork
    111 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
    112 schema:name School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore, Singapore
    113 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...