Heteroscedastic Sparse Representation Based Classification for Face Recognition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-06

AUTHORS

Hao Zheng, Jianchun Xie, Zhong Jin

ABSTRACT

Sparse representation based classification (SRC) have received a great deal of attention in recent years. The main idea of SRC is to represent a given test sample as a sparse linear combina-tion of all training samples, then classifies the test sample by evaluating which class leads to the minimum residual. Although SRC has achieved good performance, especially in dealing with face occlusion and corruption, it must need a big occlusion dictionary which makes computation very expensive. In this paper, a novel method, called heteroscedastic sparse representation based classification (HSRC), is proposed to address this problem. In the presence of noises, the SRC model exists heteroscedasticity, which makes residual estimation inefficient. Therefore, heteroscedastic correction must be carried out for homoscedasticity by weighting various residuals with heteroscedastic estimation. As for heteroscedasticity, this paper establishes generalized Gaussian model through which to estimate. The proposed HSRC method is applied to face recognition (on the AR and Extended Yale B face databases). The experimental results show that HSRC has significantly less complexity than SRC, while it is more robust. More... »

PAGES

233-244

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11063-012-9214-4

DOI

http://dx.doi.org/10.1007/s11063-012-9214-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019784673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.410579.e", 
          "name": [
            "School of Computer Science and Technology, Nanjing University of Science and Technology, 210094, Nanjing, People\u2019s Republic of China", 
            "School of Mathematics and Information Technology, Nanjing Xiao Zhuang University, 211171, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Hao", 
        "id": "sg:person.07575706553.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575706553.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.410579.e", 
          "name": [
            "School of Computer Science and Technology, Nanjing University of Science and Technology, 210094, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Jianchun", 
        "id": "sg:person.014525317355.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525317355.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.410579.e", 
          "name": [
            "School of Computer Science and Technology, Nanjing University of Science and Technology, 210094, Nanjing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jin", 
        "givenName": "Zhong", 
        "id": "sg:person.012260464323.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012260464323.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1162/neco.2007.19.9.2301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000942115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2006.871582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007222025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15567-3_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029674869", 
          "https://doi.org/10.1007/978-3-642-15567-3_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15567-3_33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029674869", 
          "https://doi.org/10.1007/978-3-642-15567-3_33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1904-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639131", 
          "https://doi.org/10.1007/978-1-4757-1904-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1904-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031639131", 
          "https://doi.org/10.1007/978-1-4757-1904-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.927464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/76.350779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061221918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.258082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061228470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.704308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061239789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/97.763145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061251309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2006.873455", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2006.881969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2007.911828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2004.834793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.2005.860474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061650763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.860852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2007.895328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.398700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062349992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s1064827596304010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062884436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176350364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064409132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1912156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069640007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2005.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093822965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094816098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2010.5652306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095152607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095225951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095361975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098708553"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-06", 
    "datePublishedReg": "2012-06-01", 
    "description": "Sparse representation based classification (SRC) have received a great deal of attention in recent years. The main idea of SRC is to represent a given test sample as a sparse linear combina-tion of all training samples, then classifies the test sample by evaluating which class leads to the minimum residual. Although SRC has achieved good performance, especially in dealing with face occlusion and corruption, it must need a big occlusion dictionary which makes computation very expensive. In this paper, a novel method, called heteroscedastic sparse representation based classification (HSRC), is proposed to address this problem. In the presence of noises, the SRC model exists heteroscedasticity, which makes residual estimation inefficient. Therefore, heteroscedastic correction must be carried out for homoscedasticity by weighting various residuals with heteroscedastic estimation. As for heteroscedasticity, this paper establishes generalized Gaussian model through which to estimate. The proposed HSRC method is applied to face recognition (on the AR and Extended Yale B face databases). The experimental results show that HSRC has significantly less complexity than SRC, while it is more robust.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11063-012-9214-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1132792", 
        "issn": [
          "1370-4621", 
          "1573-773X"
        ], 
        "name": "Neural Processing Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "35"
      }
    ], 
    "name": "Heteroscedastic Sparse Representation Based Classification for Face Recognition", 
    "pagination": "233-244", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e43e68a9ebb26db59c068a0db93337fc92cbe2cf54a5f80d5af49fb02b05df2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11063-012-9214-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019784673"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11063-012-9214-4", 
      "https://app.dimensions.ai/details/publication/pub.1019784673"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000531.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11063-012-9214-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11063-012-9214-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11063-012-9214-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11063-012-9214-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11063-012-9214-4'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11063-012-9214-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N550d53670bf843bd922bc6a7517d75d7
4 schema:citation sg:pub.10.1007/978-1-4757-1904-8
5 sg:pub.10.1007/978-3-642-15567-3_33
6 https://doi.org/10.1090/cbms/092
7 https://doi.org/10.1109/34.927464
8 https://doi.org/10.1109/76.350779
9 https://doi.org/10.1109/78.258082
10 https://doi.org/10.1109/83.704308
11 https://doi.org/10.1109/97.763145
12 https://doi.org/10.1109/cvpr.2005.30
13 https://doi.org/10.1109/cvpr.2011.5995313
14 https://doi.org/10.1109/cvpr.2011.5995556
15 https://doi.org/10.1109/iccv.2011.6126277
16 https://doi.org/10.1109/icip.2010.5652306
17 https://doi.org/10.1109/tip.2006.873455
18 https://doi.org/10.1109/tip.2006.881969
19 https://doi.org/10.1109/tip.2007.911828
20 https://doi.org/10.1109/tit.2004.834793
21 https://doi.org/10.1109/tit.2005.860474
22 https://doi.org/10.1109/tit.2006.871582
23 https://doi.org/10.1109/tnn.2005.860852
24 https://doi.org/10.1109/tpami.2008.79
25 https://doi.org/10.1109/tsmcb.2007.895328
26 https://doi.org/10.1121/1.398700
27 https://doi.org/10.1137/s1064827596304010
28 https://doi.org/10.1162/neco.2007.19.9.2301
29 https://doi.org/10.1214/aos/1176350364
30 https://doi.org/10.2307/1912156
31 schema:datePublished 2012-06
32 schema:datePublishedReg 2012-06-01
33 schema:description Sparse representation based classification (SRC) have received a great deal of attention in recent years. The main idea of SRC is to represent a given test sample as a sparse linear combina-tion of all training samples, then classifies the test sample by evaluating which class leads to the minimum residual. Although SRC has achieved good performance, especially in dealing with face occlusion and corruption, it must need a big occlusion dictionary which makes computation very expensive. In this paper, a novel method, called heteroscedastic sparse representation based classification (HSRC), is proposed to address this problem. In the presence of noises, the SRC model exists heteroscedasticity, which makes residual estimation inefficient. Therefore, heteroscedastic correction must be carried out for homoscedasticity by weighting various residuals with heteroscedastic estimation. As for heteroscedasticity, this paper establishes generalized Gaussian model through which to estimate. The proposed HSRC method is applied to face recognition (on the AR and Extended Yale B face databases). The experimental results show that HSRC has significantly less complexity than SRC, while it is more robust.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N238b6bf7bdfd4723b3a97c511d7943da
38 N40ae5636ede54f289a3bea77e5a265ba
39 sg:journal.1132792
40 schema:name Heteroscedastic Sparse Representation Based Classification for Face Recognition
41 schema:pagination 233-244
42 schema:productId N10d2a22ac72d44858e0463d47d885592
43 Nc01a88d1cd04448c835d374886bcd6ed
44 Ne90f61f71b7f4c7db2250cbc2095c641
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019784673
46 https://doi.org/10.1007/s11063-012-9214-4
47 schema:sdDatePublished 2019-04-11T02:14
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N43c71b6e30de431885fda59bf0612e65
50 schema:url http://link.springer.com/10.1007%2Fs11063-012-9214-4
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N10d2a22ac72d44858e0463d47d885592 schema:name readcube_id
55 schema:value 5e43e68a9ebb26db59c068a0db93337fc92cbe2cf54a5f80d5af49fb02b05df2
56 rdf:type schema:PropertyValue
57 N1409c1bf8f314916bbffcf2bb7e5ec33 rdf:first sg:person.012260464323.03
58 rdf:rest rdf:nil
59 N238b6bf7bdfd4723b3a97c511d7943da schema:issueNumber 3
60 rdf:type schema:PublicationIssue
61 N40ae5636ede54f289a3bea77e5a265ba schema:volumeNumber 35
62 rdf:type schema:PublicationVolume
63 N43c71b6e30de431885fda59bf0612e65 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N550d53670bf843bd922bc6a7517d75d7 rdf:first sg:person.07575706553.15
66 rdf:rest Nea184fc31ad746e394390fde58ac0783
67 Nc01a88d1cd04448c835d374886bcd6ed schema:name dimensions_id
68 schema:value pub.1019784673
69 rdf:type schema:PropertyValue
70 Ne90f61f71b7f4c7db2250cbc2095c641 schema:name doi
71 schema:value 10.1007/s11063-012-9214-4
72 rdf:type schema:PropertyValue
73 Nea184fc31ad746e394390fde58ac0783 rdf:first sg:person.014525317355.04
74 rdf:rest N1409c1bf8f314916bbffcf2bb7e5ec33
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:journal.1132792 schema:issn 1370-4621
82 1573-773X
83 schema:name Neural Processing Letters
84 rdf:type schema:Periodical
85 sg:person.012260464323.03 schema:affiliation https://www.grid.ac/institutes/grid.410579.e
86 schema:familyName Jin
87 schema:givenName Zhong
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012260464323.03
89 rdf:type schema:Person
90 sg:person.014525317355.04 schema:affiliation https://www.grid.ac/institutes/grid.410579.e
91 schema:familyName Xie
92 schema:givenName Jianchun
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014525317355.04
94 rdf:type schema:Person
95 sg:person.07575706553.15 schema:affiliation https://www.grid.ac/institutes/grid.410579.e
96 schema:familyName Zheng
97 schema:givenName Hao
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07575706553.15
99 rdf:type schema:Person
100 sg:pub.10.1007/978-1-4757-1904-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031639131
101 https://doi.org/10.1007/978-1-4757-1904-8
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/978-3-642-15567-3_33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029674869
104 https://doi.org/10.1007/978-3-642-15567-3_33
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1090/cbms/092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098708553
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/34.927464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157278
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/76.350779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061221918
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/78.258082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061228470
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/83.704308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061239789
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/97.763145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061251309
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/cvpr.2005.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093822965
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/cvpr.2011.5995313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095225951
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/cvpr.2011.5995556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095361975
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/iccv.2011.6126277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094816098
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/icip.2010.5652306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095152607
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/tip.2006.873455 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641428
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/tip.2006.881969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641581
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tip.2007.911828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641878
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/tit.2004.834793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650245
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tit.2005.860474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061650763
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tit.2006.871582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007222025
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tnn.2005.860852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716955
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tpami.2008.79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743675
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tsmcb.2007.895328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796735
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1121/1.398700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062349992
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1137/s1064827596304010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062884436
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1162/neco.2007.19.9.2301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000942115
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1214/aos/1176350364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064409132
153 rdf:type schema:CreativeWork
154 https://doi.org/10.2307/1912156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069640007
155 rdf:type schema:CreativeWork
156 https://www.grid.ac/institutes/grid.410579.e schema:alternateName Nanjing University of Science and Technology
157 schema:name School of Computer Science and Technology, Nanjing University of Science and Technology, 210094, Nanjing, People’s Republic of China
158 School of Mathematics and Information Technology, Nanjing Xiao Zhuang University, 211171, Nanjing, People’s Republic of China
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...