Revisitation of imaging features of skull base chondrosarcoma in comparison to chordoma View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-26

AUTHORS

Hirotaka Hasegawa, Masahiro Shin, Ryoko Niwa, Satoshi Koizumi, Shoko Yoshimoto, Naoyuki Shono, Yuki Shinya, Hirokazu Takami, Shota Tanaka, Motoyuki Umekawa, Shiori Amemiya, Taichi Kin, Nobuhito Saito

ABSTRACT

PurposePre-surgical diagnosis of skull base chondrosarcoma (SBC) is often challenging due to the resemblance to chordoma. The goal of this study was to develop an optimal method for predicting SBC diagnosis.MethodsThis retrospective study included patients with histologically diagnosed SBC and skull base chordoma. Their clinical and radiologic features were compared, and the predictive factors of SBC were examined.ResultsForty-one patients with SBC and 41 with chordoma were included. Most SBCs exhibited hypointensity (25, 64.1%) or isointensity (12, 30.8%) on T1-weighted images, and hyperintensity (34, 87.1%) or mixed intensity (5, 12.8%) on T2-weighted images. MRI contrast enhancement was usually avid or fair (89.7%) with “arabesque”-like pattern (41.0%). The lateral/paramidline location was more common in SBC than in chordoma (85.4% vs. 9.8%; P < 0.01), while midline SBCs (14.6%) were also possible. Multivariate analysis demonstrated that higher apparent diffusion coefficient (ADC) value (unit odds ratio 1.01; 95% confidence interval 1.00–1.02; P < 0.01) was associated with an SBC diagnosis. An ADC value of ≥ 1750 × 10–6 mm2/s demonstrated a strong association with an SBC diagnosis (odds ratio 5.89 × 102; 95% confidence interval 51.0–6.80 × 103; P < 0.01) and yielded a sensitivity of 93.9%, specificity of 97.4%, positive predictive value of 96.9%, and negative predictive value of 95.0%.ConclusionThe ADC-based method is helpful in distinguishing SBC from chordoma and readily applicable in clinical practice. The prediction accuracy increases when other characteristics of SBC, such as non-midline location and arabesque-like enhancement, are considered together. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11060-022-04097-2

DOI

http://dx.doi.org/10.1007/s11060-022-04097-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149790801

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35882753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hasegawa", 
        "givenName": "Hirotaka", 
        "id": "sg:person.013140147041.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140147041.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, Teikyo University, Itabashi, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.264706.1", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
            "Department of Neurosurgery, Teikyo University, Itabashi, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shin", 
        "givenName": "Masahiro", 
        "id": "sg:person.01003405215.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003405215.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niwa", 
        "givenName": "Ryoko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koizumi", 
        "givenName": "Satoshi", 
        "id": "sg:person.01346247331.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346247331.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yoshimoto", 
        "givenName": "Shoko", 
        "id": "sg:person.014200370606.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014200370606.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shono", 
        "givenName": "Naoyuki", 
        "id": "sg:person.01266651766.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266651766.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shinya", 
        "givenName": "Yuki", 
        "id": "sg:person.0667366001.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667366001.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takami", 
        "givenName": "Hirokazu", 
        "id": "sg:person.01077606154.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077606154.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tanaka", 
        "givenName": "Shota", 
        "id": "sg:person.01353533555.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353533555.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Umekawa", 
        "givenName": "Motoyuki", 
        "id": "sg:person.07763313503.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07763313503.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, The University of Tokyo, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Radiology, The University of Tokyo, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amemiya", 
        "givenName": "Shiori", 
        "id": "sg:person.01142662101.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142662101.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kin", 
        "givenName": "Taichi", 
        "id": "sg:person.01355220306.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355220306.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saito", 
        "givenName": "Nobuhito", 
        "id": "sg:person.012465122502.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012465122502.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002340050469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007254580", 
          "https://doi.org/10.1007/s002340050469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11060-019-03129-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112504529", 
          "https://doi.org/10.1007/s11060-019-03129-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11060-021-03764-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137532225", 
          "https://doi.org/10.1007/s11060-021-03764-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00256-021-03723-w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1135025480", 
          "https://doi.org/10.1007/s00256-021-03723-w"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-26", 
    "datePublishedReg": "2022-07-26", 
    "description": "PurposePre-surgical diagnosis of skull base chondrosarcoma (SBC) is often challenging due to the resemblance to chordoma. The goal of this study was to develop an optimal method for predicting SBC diagnosis.MethodsThis retrospective study included patients with histologically diagnosed SBC and skull base chordoma. Their clinical and radiologic features were compared, and the predictive factors of SBC were examined.ResultsForty-one patients with SBC and 41 with chordoma were included. Most SBCs exhibited hypointensity (25, 64.1%) or isointensity (12, 30.8%) on T1-weighted images, and hyperintensity (34, 87.1%) or mixed intensity (5, 12.8%) on T2-weighted images. MRI contrast enhancement was usually avid or fair (89.7%) with \u201carabesque\u201d-like pattern (41.0%). The lateral/paramidline location was more common in SBC than in chordoma (85.4% vs. 9.8%; P\u2009<\u20090.01), while midline SBCs (14.6%) were also possible. Multivariate analysis demonstrated that higher apparent diffusion coefficient (ADC) value (unit odds ratio 1.01; 95% confidence interval 1.00\u20131.02; P\u2009<\u20090.01) was associated with an SBC diagnosis. An ADC value of\u2009\u2265\u20091750\u2009\u00d7\u200910\u20136 mm2/s demonstrated a strong association with an SBC diagnosis (odds ratio 5.89\u2009\u00d7\u2009102; 95% confidence interval 51.0\u20136.80\u2009\u00d7\u2009103; P\u2009<\u20090.01) and yielded a sensitivity of 93.9%, specificity of 97.4%, positive predictive value of 96.9%, and negative predictive value of 95.0%.ConclusionThe ADC-based method is helpful in distinguishing SBC from chordoma and readily applicable in clinical practice. The prediction accuracy increases when other characteristics of SBC, such as non-midline location and arabesque-like enhancement, are considered together.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11060-022-04097-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094205", 
        "issn": [
          "0167-594X", 
          "1573-7373"
        ], 
        "name": "Journal of Neuro-Oncology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "skull base chondrosarcoma", 
      "predictive value", 
      "ResultsForty-one patients", 
      "higher apparent diffusion coefficient values", 
      "MethodsThis retrospective study", 
      "apparent diffusion coefficient (ADC) values", 
      "negative predictive value", 
      "skull base chordomas", 
      "positive predictive value", 
      "T2-weighted images", 
      "T1-weighted images", 
      "radiologic features", 
      "retrospective study", 
      "predictive factors", 
      "clinical practice", 
      "multivariate analysis", 
      "chordoma", 
      "mixed intensity", 
      "ADC values", 
      "diagnosis", 
      "strong association", 
      "patients", 
      "chondrosarcoma", 
      "contrast enhancement", 
      "MRI contrast enhancement", 
      "mm2/s", 
      "diffusion coefficient values", 
      "hyperintensity", 
      "optimal method", 
      "hypointensity", 
      "isointensity", 
      "study", 
      "association", 
      "like pattern", 
      "specificity", 
      "factors", 
      "sensitivity", 
      "increase", 
      "features", 
      "values", 
      "practice", 
      "patterns", 
      "location", 
      "enhancement", 
      "method", 
      "comparison", 
      "analysis", 
      "characteristics", 
      "goal", 
      "resemblance", 
      "intensity", 
      "coefficient values", 
      "images", 
      "revisitation", 
      "accuracy increases", 
      "prediction accuracy increases"
    ], 
    "name": "Revisitation of imaging features of skull base chondrosarcoma in comparison to chordoma", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149790801"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11060-022-04097-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35882753"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11060-022-04097-2", 
      "https://app.dimensions.ai/details/publication/pub.1149790801"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_932.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11060-022-04097-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11060-022-04097-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11060-022-04097-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11060-022-04097-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11060-022-04097-2'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      83 URIs      71 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11060-022-04097-2 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N3ca28216a7be454a86ed711b7696f6ad
4 schema:citation sg:pub.10.1007/s002340050469
5 sg:pub.10.1007/s00256-021-03723-w
6 sg:pub.10.1007/s11060-019-03129-8
7 sg:pub.10.1007/s11060-021-03764-0
8 schema:datePublished 2022-07-26
9 schema:datePublishedReg 2022-07-26
10 schema:description PurposePre-surgical diagnosis of skull base chondrosarcoma (SBC) is often challenging due to the resemblance to chordoma. The goal of this study was to develop an optimal method for predicting SBC diagnosis.MethodsThis retrospective study included patients with histologically diagnosed SBC and skull base chordoma. Their clinical and radiologic features were compared, and the predictive factors of SBC were examined.ResultsForty-one patients with SBC and 41 with chordoma were included. Most SBCs exhibited hypointensity (25, 64.1%) or isointensity (12, 30.8%) on T1-weighted images, and hyperintensity (34, 87.1%) or mixed intensity (5, 12.8%) on T2-weighted images. MRI contrast enhancement was usually avid or fair (89.7%) with “arabesque”-like pattern (41.0%). The lateral/paramidline location was more common in SBC than in chordoma (85.4% vs. 9.8%; P < 0.01), while midline SBCs (14.6%) were also possible. Multivariate analysis demonstrated that higher apparent diffusion coefficient (ADC) value (unit odds ratio 1.01; 95% confidence interval 1.00–1.02; P < 0.01) was associated with an SBC diagnosis. An ADC value of ≥ 1750 × 10–6 mm2/s demonstrated a strong association with an SBC diagnosis (odds ratio 5.89 × 102; 95% confidence interval 51.0–6.80 × 103; P < 0.01) and yielded a sensitivity of 93.9%, specificity of 97.4%, positive predictive value of 96.9%, and negative predictive value of 95.0%.ConclusionThe ADC-based method is helpful in distinguishing SBC from chordoma and readily applicable in clinical practice. The prediction accuracy increases when other characteristics of SBC, such as non-midline location and arabesque-like enhancement, are considered together.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf sg:journal.1094205
14 schema:keywords ADC values
15 MRI contrast enhancement
16 MethodsThis retrospective study
17 ResultsForty-one patients
18 T1-weighted images
19 T2-weighted images
20 accuracy increases
21 analysis
22 apparent diffusion coefficient (ADC) values
23 association
24 characteristics
25 chondrosarcoma
26 chordoma
27 clinical practice
28 coefficient values
29 comparison
30 contrast enhancement
31 diagnosis
32 diffusion coefficient values
33 enhancement
34 factors
35 features
36 goal
37 higher apparent diffusion coefficient values
38 hyperintensity
39 hypointensity
40 images
41 increase
42 intensity
43 isointensity
44 like pattern
45 location
46 method
47 mixed intensity
48 mm2/s
49 multivariate analysis
50 negative predictive value
51 optimal method
52 patients
53 patterns
54 positive predictive value
55 practice
56 prediction accuracy increases
57 predictive factors
58 predictive value
59 radiologic features
60 resemblance
61 retrospective study
62 revisitation
63 sensitivity
64 skull base chondrosarcoma
65 skull base chordomas
66 specificity
67 strong association
68 study
69 values
70 schema:name Revisitation of imaging features of skull base chondrosarcoma in comparison to chordoma
71 schema:pagination 1-10
72 schema:productId N7fc03eed833b4ee987dd83ab17baa021
73 Nb0ae110456fb49c0822daf31f584d0b5
74 Neb1e04591d0843bcb327e0ad67b9c0dc
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149790801
76 https://doi.org/10.1007/s11060-022-04097-2
77 schema:sdDatePublished 2022-09-02T16:07
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher N30edd131037247288e16db530f40b592
80 schema:url https://doi.org/10.1007/s11060-022-04097-2
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N0010fb8d515b452d9d5d916a47e43999 rdf:first sg:person.01353533555.55
85 rdf:rest N9ac0ad27c959454b8e0e7b3dd8873c3e
86 N0052ad6659904f3794df80ff7a2378a4 rdf:first sg:person.01003405215.05
87 rdf:rest Nf3878cf990184311ba2572824d91ad2c
88 N152a25c7804b4e3c8341d7f9b7980164 rdf:first sg:person.01355220306.98
89 rdf:rest N35a958b2e7dc42159c59a65905d0f39a
90 N2a564fc319a5481ebf814c8572e41cb0 rdf:first sg:person.01142662101.26
91 rdf:rest N152a25c7804b4e3c8341d7f9b7980164
92 N30edd131037247288e16db530f40b592 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N35a958b2e7dc42159c59a65905d0f39a rdf:first sg:person.012465122502.14
95 rdf:rest rdf:nil
96 N3a83b820d4a34a1b9901d59f1766b578 rdf:first sg:person.01346247331.72
97 rdf:rest N7d08c6521f2344f0b42244781bccb462
98 N3ca28216a7be454a86ed711b7696f6ad rdf:first sg:person.013140147041.92
99 rdf:rest N0052ad6659904f3794df80ff7a2378a4
100 N59fbbc3d55ef40928274cee3980010da rdf:first sg:person.0667366001.77
101 rdf:rest N635607413e3c4b75be05a5cfe41977c9
102 N635607413e3c4b75be05a5cfe41977c9 rdf:first sg:person.01077606154.26
103 rdf:rest N0010fb8d515b452d9d5d916a47e43999
104 N7d08c6521f2344f0b42244781bccb462 rdf:first sg:person.014200370606.16
105 rdf:rest Ned35892b0aa4456086bbc6e043b552e7
106 N7fc03eed833b4ee987dd83ab17baa021 schema:name dimensions_id
107 schema:value pub.1149790801
108 rdf:type schema:PropertyValue
109 N93d2a75f51e248ca9755776c0d5ef460 schema:affiliation grid-institutes:grid.26999.3d
110 schema:familyName Niwa
111 schema:givenName Ryoko
112 rdf:type schema:Person
113 N9ac0ad27c959454b8e0e7b3dd8873c3e rdf:first sg:person.07763313503.48
114 rdf:rest N2a564fc319a5481ebf814c8572e41cb0
115 Nb0ae110456fb49c0822daf31f584d0b5 schema:name doi
116 schema:value 10.1007/s11060-022-04097-2
117 rdf:type schema:PropertyValue
118 Neb1e04591d0843bcb327e0ad67b9c0dc schema:name pubmed_id
119 schema:value 35882753
120 rdf:type schema:PropertyValue
121 Ned35892b0aa4456086bbc6e043b552e7 rdf:first sg:person.01266651766.52
122 rdf:rest N59fbbc3d55ef40928274cee3980010da
123 Nf3878cf990184311ba2572824d91ad2c rdf:first N93d2a75f51e248ca9755776c0d5ef460
124 rdf:rest N3a83b820d4a34a1b9901d59f1766b578
125 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
126 schema:name Medical and Health Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
129 schema:name Clinical Sciences
130 rdf:type schema:DefinedTerm
131 sg:journal.1094205 schema:issn 0167-594X
132 1573-7373
133 schema:name Journal of Neuro-Oncology
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.01003405215.05 schema:affiliation grid-institutes:grid.264706.1
137 schema:familyName Shin
138 schema:givenName Masahiro
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003405215.05
140 rdf:type schema:Person
141 sg:person.01077606154.26 schema:affiliation grid-institutes:grid.26999.3d
142 schema:familyName Takami
143 schema:givenName Hirokazu
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077606154.26
145 rdf:type schema:Person
146 sg:person.01142662101.26 schema:affiliation grid-institutes:grid.26999.3d
147 schema:familyName Amemiya
148 schema:givenName Shiori
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142662101.26
150 rdf:type schema:Person
151 sg:person.012465122502.14 schema:affiliation grid-institutes:grid.26999.3d
152 schema:familyName Saito
153 schema:givenName Nobuhito
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012465122502.14
155 rdf:type schema:Person
156 sg:person.01266651766.52 schema:affiliation grid-institutes:grid.26999.3d
157 schema:familyName Shono
158 schema:givenName Naoyuki
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266651766.52
160 rdf:type schema:Person
161 sg:person.013140147041.92 schema:affiliation grid-institutes:grid.26999.3d
162 schema:familyName Hasegawa
163 schema:givenName Hirotaka
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013140147041.92
165 rdf:type schema:Person
166 sg:person.01346247331.72 schema:affiliation grid-institutes:grid.26999.3d
167 schema:familyName Koizumi
168 schema:givenName Satoshi
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346247331.72
170 rdf:type schema:Person
171 sg:person.01353533555.55 schema:affiliation grid-institutes:grid.26999.3d
172 schema:familyName Tanaka
173 schema:givenName Shota
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353533555.55
175 rdf:type schema:Person
176 sg:person.01355220306.98 schema:affiliation grid-institutes:grid.26999.3d
177 schema:familyName Kin
178 schema:givenName Taichi
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355220306.98
180 rdf:type schema:Person
181 sg:person.014200370606.16 schema:affiliation grid-institutes:grid.26999.3d
182 schema:familyName Yoshimoto
183 schema:givenName Shoko
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014200370606.16
185 rdf:type schema:Person
186 sg:person.0667366001.77 schema:affiliation grid-institutes:grid.26999.3d
187 schema:familyName Shinya
188 schema:givenName Yuki
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667366001.77
190 rdf:type schema:Person
191 sg:person.07763313503.48 schema:affiliation grid-institutes:grid.26999.3d
192 schema:familyName Umekawa
193 schema:givenName Motoyuki
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07763313503.48
195 rdf:type schema:Person
196 sg:pub.10.1007/s002340050469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007254580
197 https://doi.org/10.1007/s002340050469
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s00256-021-03723-w schema:sameAs https://app.dimensions.ai/details/publication/pub.1135025480
200 https://doi.org/10.1007/s00256-021-03723-w
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s11060-019-03129-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112504529
203 https://doi.org/10.1007/s11060-019-03129-8
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s11060-021-03764-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137532225
206 https://doi.org/10.1007/s11060-021-03764-0
207 rdf:type schema:CreativeWork
208 grid-institutes:grid.264706.1 schema:alternateName Department of Neurosurgery, Teikyo University, Itabashi, Tokyo, Japan
209 schema:name Department of Neurosurgery, Teikyo University, Itabashi, Tokyo, Japan
210 Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan
211 rdf:type schema:Organization
212 grid-institutes:grid.26999.3d schema:alternateName Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan
213 Department of Radiology, The University of Tokyo, Bunkyo, Tokyo, Japan
214 schema:name Department of Neurosurgery, The University of Tokyo, 7-3-1 Hongo, 1138655, Bunkyo, Tokyo, Japan
215 Department of Radiology, The University of Tokyo, Bunkyo, Tokyo, Japan
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...