Ontology type: schema:ScholarlyArticle
2019-08-20
AUTHORSClémentine Fulbert, Christophe Gaude, Eric Sulpice, Stéphan Chabardès, David Ratel
ABSTRACTPurposeGlioblastoma is the most aggressive malignant brain tumor. Despite multimodal treatments, median survival is only 15 months for glioblastoma patients, with tumor recurring in the resection margins after surgical removal. Hypothermia is emerging as an interesting and safe treatment for several conditions. In the context of glioblastoma, we propose that moderate hypothermia could inhibit both cell proliferation and migration, and thus help prevent secondary tumor growth.MethodsIn vitro experiments on A172, U251, U87 and T98G human glioblastoma cell lines explored the effects of severe (23 °C), moderate (28 °C), and mild (33 °C) hypothermia. We further investigated the effects of moderate hypothermia on cell proliferation, migration, morphology, and cell cycle distribution.ResultsSimilar results were obtained with all four cell lines, indicating a consistent and broad effect of moderate hypothermia. Hypothermia inhibited both cell proliferation and non-oriented migration in a dose-dependent manner, with a significant reduction at 33 °C and almost total arrest at 28 °C. Cell proliferation arrest was long-lasting and oriented cell migration was also reduced at 28 °C. Moreover, moderate hypothermia significantly altered cell cycle distribution, with cells accumulating in the G2/M phase, leading to cell cycle arrest. Lastly, hypothermia at 28 °C also affected cell morphology by deteriorating cell membranes and altering cell shape.ConclusionsThe presented results demonstrate that moderate hypothermia could be a promising adjuvant therapy for glioblastoma treatment as it strongly inhibits both cell proliferation and migration. If in vivo preclinical results corroborate our findings, therapeutic hypothermia applied at the resection margins could probably delay tumor recurrence, combined with current treatments. More... »
PAGES489-499
http://scigraph.springernature.com/pub.10.1007/s11060-019-03263-3
DOIhttp://dx.doi.org/10.1007/s11060-019-03263-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1120795353
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/31482266
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Clinical Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Apoptosis",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Cycle Checkpoints",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Movement",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Proliferation",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Glioblastoma",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Hypothermia",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Tumor Cells, Cultured",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Wound Healing",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France",
"id": "http://www.grid.ac/institutes/grid.450307.5",
"name": [
"Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France"
],
"type": "Organization"
},
"familyName": "Fulbert",
"givenName": "Cl\u00e9mentine",
"id": "sg:person.07714464001.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714464001.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France",
"id": "http://www.grid.ac/institutes/grid.450307.5",
"name": [
"Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France"
],
"type": "Organization"
},
"familyName": "Gaude",
"givenName": "Christophe",
"id": "sg:person.013101011031.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101011031.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Univ. Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France",
"id": "http://www.grid.ac/institutes/grid.450307.5",
"name": [
"Univ. Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France"
],
"type": "Organization"
},
"familyName": "Sulpice",
"givenName": "Eric",
"id": "sg:person.01130310301.78",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130310301.78"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Grenoble Institut des Neurosciences, Univ. Grenoble Alpes, Inserm U1216, 38000, Grenoble, France",
"id": "http://www.grid.ac/institutes/grid.462307.4",
"name": [
"Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France",
"Neurosurgery Department, CHU Grenoble Alpes, 38000, Grenoble, France",
"Grenoble Institut des Neurosciences, Univ. Grenoble Alpes, Inserm U1216, 38000, Grenoble, France"
],
"type": "Organization"
},
"familyName": "Chabard\u00e8s",
"givenName": "St\u00e9phan",
"id": "sg:person.01154766075.87",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154766075.87"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France",
"id": "http://www.grid.ac/institutes/grid.450307.5",
"name": [
"Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France"
],
"type": "Organization"
},
"familyName": "Ratel",
"givenName": "David",
"id": "sg:person.01213103677.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213103677.84"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00401-016-1545-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021788062",
"https://doi.org/10.1007/s00401-016-1545-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-08-20",
"datePublishedReg": "2019-08-20",
"description": "PurposeGlioblastoma is the most aggressive malignant brain tumor. Despite multimodal treatments, median survival is only 15\u00a0months for glioblastoma patients, with tumor recurring in the resection margins after surgical removal. Hypothermia is emerging as an interesting and safe treatment for several conditions. In the context of glioblastoma, we propose that moderate hypothermia could inhibit both cell proliferation and migration, and thus help prevent secondary tumor growth.MethodsIn vitro experiments on A172, U251, U87 and T98G human glioblastoma cell lines explored the effects of severe (23\u00a0\u00b0C), moderate (28\u00a0\u00b0C), and mild (33\u00a0\u00b0C) hypothermia. We further investigated the effects of moderate hypothermia on cell proliferation, migration, morphology, and cell cycle distribution.ResultsSimilar results were obtained with all four cell lines, indicating a consistent and broad effect of moderate hypothermia. Hypothermia inhibited both cell proliferation and non-oriented migration in a dose-dependent manner, with a significant reduction at 33\u00a0\u00b0C and almost total arrest at 28\u00a0\u00b0C. Cell proliferation arrest was long-lasting and oriented cell migration was also reduced at 28\u00a0\u00b0C. Moreover, moderate hypothermia significantly altered cell cycle distribution, with cells accumulating in the G2/M phase, leading to cell cycle arrest. Lastly, hypothermia at 28\u00a0\u00b0C also affected cell morphology by deteriorating cell membranes and altering cell shape.ConclusionsThe presented results demonstrate that moderate hypothermia could be a promising adjuvant therapy for glioblastoma treatment as it strongly inhibits both cell proliferation and migration. If in vivo preclinical results corroborate our findings, therapeutic hypothermia applied at the resection margins could probably delay tumor recurrence, combined with current treatments.",
"genre": "article",
"id": "sg:pub.10.1007/s11060-019-03263-3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1094205",
"issn": [
"0167-594X",
"1573-7373"
],
"name": "Journal of Neuro-Oncology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "144"
}
],
"keywords": [
"moderate hypothermia",
"cell cycle distribution",
"resection margins",
"cell proliferation",
"aggressive malignant brain tumor",
"cycle distribution",
"T98G human glioblastoma cell line",
"promising adjuvant therapy",
"malignant brain tumors",
"cell lines",
"dose-dependent manner",
"secondary tumor growth",
"context of glioblastoma",
"G2/M phase",
"median survival",
"human glioblastoma cell lines",
"adjuvant therapy",
"therapeutic hypothermia",
"multimodal treatment",
"tumor recurrence",
"surgical removal",
"safe treatment",
"mild hypothermia",
"cell cycle arrest",
"current treatment",
"preclinical results",
"tumor recurring",
"brain tumors",
"glioblastoma patients",
"glioblastoma cell lines",
"human glioblastoma cells",
"hypothermia",
"tumor growth",
"glioblastoma treatment",
"cell proliferation arrest",
"cycle arrest",
"M phase",
"glioblastoma cells",
"treatment",
"significant reduction",
"proliferation",
"cell migration",
"arrest",
"ResultsSimilar results",
"proliferation arrest",
"broad effects",
"total arrest",
"cells",
"patients",
"recurrence",
"cell morphology",
"therapy",
"tumors",
"PurposeGlioblastoma",
"cell membrane",
"MethodsIn",
"months",
"glioblastoma",
"survival",
"U251",
"U87",
"migration",
"A172",
"effect",
"findings",
"recurring",
"margin",
"lines",
"results",
"reduction",
"manner",
"membrane",
"ConclusionsThe presented results",
"removal",
"cell shape",
"growth",
"morphology",
"conditions",
"distribution",
"phase",
"context",
"experiments",
"presented results",
"shape"
],
"name": "Moderate hypothermia inhibits both proliferation and migration of human glioblastoma cells",
"pagination": "489-499",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1120795353"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11060-019-03263-3"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"31482266"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11060-019-03263-3",
"https://app.dimensions.ai/details/publication/pub.1120795353"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:36",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_814.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11060-019-03263-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11060-019-03263-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11060-019-03263-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11060-019-03263-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11060-019-03263-3'
This table displays all metadata directly associated to this object as RDF triples.
221 TRIPLES
22 PREDICATES
120 URIs
111 LITERALS
16 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11060-019-03263-3 | schema:about | N07e7518843314ad1b613a5df665aff7a |
2 | ″ | ″ | N3639b38732ff4a0c8d824255f1bc372b |
3 | ″ | ″ | N3f975d9df52d4f88b9a5f5daa039ff8d |
4 | ″ | ″ | N65d250bfe6cb44d39622d6b4c6bdbba8 |
5 | ″ | ″ | Nb61ff6dd71894915bf9583c98d091473 |
6 | ″ | ″ | Nd6436e9affa14e2185156420d2349abd |
7 | ″ | ″ | Nd73d1d623df9436ab89dc88e26d73bfd |
8 | ″ | ″ | Ne3306f42fe4540a7853616d59220d5fc |
9 | ″ | ″ | Ne484849ef25544808e78075ecf62b20c |
10 | ″ | ″ | anzsrc-for:11 |
11 | ″ | ″ | anzsrc-for:1103 |
12 | ″ | schema:author | Nf856c767f1cf45cfa4e45664fae2ca2f |
13 | ″ | schema:citation | sg:pub.10.1007/s00401-016-1545-1 |
14 | ″ | schema:datePublished | 2019-08-20 |
15 | ″ | schema:datePublishedReg | 2019-08-20 |
16 | ″ | schema:description | PurposeGlioblastoma is the most aggressive malignant brain tumor. Despite multimodal treatments, median survival is only 15 months for glioblastoma patients, with tumor recurring in the resection margins after surgical removal. Hypothermia is emerging as an interesting and safe treatment for several conditions. In the context of glioblastoma, we propose that moderate hypothermia could inhibit both cell proliferation and migration, and thus help prevent secondary tumor growth.MethodsIn vitro experiments on A172, U251, U87 and T98G human glioblastoma cell lines explored the effects of severe (23 °C), moderate (28 °C), and mild (33 °C) hypothermia. We further investigated the effects of moderate hypothermia on cell proliferation, migration, morphology, and cell cycle distribution.ResultsSimilar results were obtained with all four cell lines, indicating a consistent and broad effect of moderate hypothermia. Hypothermia inhibited both cell proliferation and non-oriented migration in a dose-dependent manner, with a significant reduction at 33 °C and almost total arrest at 28 °C. Cell proliferation arrest was long-lasting and oriented cell migration was also reduced at 28 °C. Moreover, moderate hypothermia significantly altered cell cycle distribution, with cells accumulating in the G2/M phase, leading to cell cycle arrest. Lastly, hypothermia at 28 °C also affected cell morphology by deteriorating cell membranes and altering cell shape.ConclusionsThe presented results demonstrate that moderate hypothermia could be a promising adjuvant therapy for glioblastoma treatment as it strongly inhibits both cell proliferation and migration. If in vivo preclinical results corroborate our findings, therapeutic hypothermia applied at the resection margins could probably delay tumor recurrence, combined with current treatments. |
17 | ″ | schema:genre | article |
18 | ″ | schema:inLanguage | en |
19 | ″ | schema:isAccessibleForFree | false |
20 | ″ | schema:isPartOf | N527e0231bf9946b4b00b2ec408cf42b3 |
21 | ″ | ″ | Na38884cec3cf43bc870c2779adadf303 |
22 | ″ | ″ | sg:journal.1094205 |
23 | ″ | schema:keywords | A172 |
24 | ″ | ″ | ConclusionsThe presented results |
25 | ″ | ″ | G2/M phase |
26 | ″ | ″ | M phase |
27 | ″ | ″ | MethodsIn |
28 | ″ | ″ | PurposeGlioblastoma |
29 | ″ | ″ | ResultsSimilar results |
30 | ″ | ″ | T98G human glioblastoma cell line |
31 | ″ | ″ | U251 |
32 | ″ | ″ | U87 |
33 | ″ | ″ | adjuvant therapy |
34 | ″ | ″ | aggressive malignant brain tumor |
35 | ″ | ″ | arrest |
36 | ″ | ″ | brain tumors |
37 | ″ | ″ | broad effects |
38 | ″ | ″ | cell cycle arrest |
39 | ″ | ″ | cell cycle distribution |
40 | ″ | ″ | cell lines |
41 | ″ | ″ | cell membrane |
42 | ″ | ″ | cell migration |
43 | ″ | ″ | cell morphology |
44 | ″ | ″ | cell proliferation |
45 | ″ | ″ | cell proliferation arrest |
46 | ″ | ″ | cell shape |
47 | ″ | ″ | cells |
48 | ″ | ″ | conditions |
49 | ″ | ″ | context |
50 | ″ | ″ | context of glioblastoma |
51 | ″ | ″ | current treatment |
52 | ″ | ″ | cycle arrest |
53 | ″ | ″ | cycle distribution |
54 | ″ | ″ | distribution |
55 | ″ | ″ | dose-dependent manner |
56 | ″ | ″ | effect |
57 | ″ | ″ | experiments |
58 | ″ | ″ | findings |
59 | ″ | ″ | glioblastoma |
60 | ″ | ″ | glioblastoma cell lines |
61 | ″ | ″ | glioblastoma cells |
62 | ″ | ″ | glioblastoma patients |
63 | ″ | ″ | glioblastoma treatment |
64 | ″ | ″ | growth |
65 | ″ | ″ | human glioblastoma cell lines |
66 | ″ | ″ | human glioblastoma cells |
67 | ″ | ″ | hypothermia |
68 | ″ | ″ | lines |
69 | ″ | ″ | malignant brain tumors |
70 | ″ | ″ | manner |
71 | ″ | ″ | margin |
72 | ″ | ″ | median survival |
73 | ″ | ″ | membrane |
74 | ″ | ″ | migration |
75 | ″ | ″ | mild hypothermia |
76 | ″ | ″ | moderate hypothermia |
77 | ″ | ″ | months |
78 | ″ | ″ | morphology |
79 | ″ | ″ | multimodal treatment |
80 | ″ | ″ | patients |
81 | ″ | ″ | phase |
82 | ″ | ″ | preclinical results |
83 | ″ | ″ | presented results |
84 | ″ | ″ | proliferation |
85 | ″ | ″ | proliferation arrest |
86 | ″ | ″ | promising adjuvant therapy |
87 | ″ | ″ | recurrence |
88 | ″ | ″ | recurring |
89 | ″ | ″ | reduction |
90 | ″ | ″ | removal |
91 | ″ | ″ | resection margins |
92 | ″ | ″ | results |
93 | ″ | ″ | safe treatment |
94 | ″ | ″ | secondary tumor growth |
95 | ″ | ″ | shape |
96 | ″ | ″ | significant reduction |
97 | ″ | ″ | surgical removal |
98 | ″ | ″ | survival |
99 | ″ | ″ | therapeutic hypothermia |
100 | ″ | ″ | therapy |
101 | ″ | ″ | total arrest |
102 | ″ | ″ | treatment |
103 | ″ | ″ | tumor growth |
104 | ″ | ″ | tumor recurrence |
105 | ″ | ″ | tumor recurring |
106 | ″ | ″ | tumors |
107 | ″ | schema:name | Moderate hypothermia inhibits both proliferation and migration of human glioblastoma cells |
108 | ″ | schema:pagination | 489-499 |
109 | ″ | schema:productId | N015d9cbebeae4ebf8574bd4cf1df141e |
110 | ″ | ″ | N2561426198d74a0c9d894ca7233e4ad1 |
111 | ″ | ″ | Nb577e6b55fe9479c88fe80e538291644 |
112 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1120795353 |
113 | ″ | ″ | https://doi.org/10.1007/s11060-019-03263-3 |
114 | ″ | schema:sdDatePublished | 2022-05-20T07:36 |
115 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
116 | ″ | schema:sdPublisher | N32accd53d7f44eaab076e9dacfa8f45a |
117 | ″ | schema:url | https://doi.org/10.1007/s11060-019-03263-3 |
118 | ″ | sgo:license | sg:explorer/license/ |
119 | ″ | sgo:sdDataset | articles |
120 | ″ | rdf:type | schema:ScholarlyArticle |
121 | N015d9cbebeae4ebf8574bd4cf1df141e | schema:name | doi |
122 | ″ | schema:value | 10.1007/s11060-019-03263-3 |
123 | ″ | rdf:type | schema:PropertyValue |
124 | N07e7518843314ad1b613a5df665aff7a | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
125 | ″ | schema:name | Hypothermia |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | N2561426198d74a0c9d894ca7233e4ad1 | schema:name | dimensions_id |
128 | ″ | schema:value | pub.1120795353 |
129 | ″ | rdf:type | schema:PropertyValue |
130 | N32accd53d7f44eaab076e9dacfa8f45a | schema:name | Springer Nature - SN SciGraph project |
131 | ″ | rdf:type | schema:Organization |
132 | N3639b38732ff4a0c8d824255f1bc372b | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
133 | ″ | schema:name | Glioblastoma |
134 | ″ | rdf:type | schema:DefinedTerm |
135 | N3f975d9df52d4f88b9a5f5daa039ff8d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
136 | ″ | schema:name | Cell Proliferation |
137 | ″ | rdf:type | schema:DefinedTerm |
138 | N527e0231bf9946b4b00b2ec408cf42b3 | schema:issueNumber | 3 |
139 | ″ | rdf:type | schema:PublicationIssue |
140 | N5e3e6091d08944c5a212cacaa7e1eab2 | rdf:first | sg:person.013101011031.01 |
141 | ″ | rdf:rest | Na107951f4e494681a5f9d9c626767ab1 |
142 | N65d250bfe6cb44d39622d6b4c6bdbba8 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
143 | ″ | schema:name | Tumor Cells, Cultured |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | Na107951f4e494681a5f9d9c626767ab1 | rdf:first | sg:person.01130310301.78 |
146 | ″ | rdf:rest | Na9237123ada94e3cbd6390e7facebc42 |
147 | Na38884cec3cf43bc870c2779adadf303 | schema:volumeNumber | 144 |
148 | ″ | rdf:type | schema:PublicationVolume |
149 | Na9237123ada94e3cbd6390e7facebc42 | rdf:first | sg:person.01154766075.87 |
150 | ″ | rdf:rest | Nfb934808790248a38b3f0884f78c80a0 |
151 | Nb577e6b55fe9479c88fe80e538291644 | schema:name | pubmed_id |
152 | ″ | schema:value | 31482266 |
153 | ″ | rdf:type | schema:PropertyValue |
154 | Nb61ff6dd71894915bf9583c98d091473 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
155 | ″ | schema:name | Cell Movement |
156 | ″ | rdf:type | schema:DefinedTerm |
157 | Nd6436e9affa14e2185156420d2349abd | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
158 | ″ | schema:name | Humans |
159 | ″ | rdf:type | schema:DefinedTerm |
160 | Nd73d1d623df9436ab89dc88e26d73bfd | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
161 | ″ | schema:name | Cell Cycle Checkpoints |
162 | ″ | rdf:type | schema:DefinedTerm |
163 | Ne3306f42fe4540a7853616d59220d5fc | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
164 | ″ | schema:name | Apoptosis |
165 | ″ | rdf:type | schema:DefinedTerm |
166 | Ne484849ef25544808e78075ecf62b20c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
167 | ″ | schema:name | Wound Healing |
168 | ″ | rdf:type | schema:DefinedTerm |
169 | Nf856c767f1cf45cfa4e45664fae2ca2f | rdf:first | sg:person.07714464001.90 |
170 | ″ | rdf:rest | N5e3e6091d08944c5a212cacaa7e1eab2 |
171 | Nfb934808790248a38b3f0884f78c80a0 | rdf:first | sg:person.01213103677.84 |
172 | ″ | rdf:rest | rdf:nil |
173 | anzsrc-for:11 | schema:inDefinedTermSet | anzsrc-for: |
174 | ″ | schema:name | Medical and Health Sciences |
175 | ″ | rdf:type | schema:DefinedTerm |
176 | anzsrc-for:1103 | schema:inDefinedTermSet | anzsrc-for: |
177 | ″ | schema:name | Clinical Sciences |
178 | ″ | rdf:type | schema:DefinedTerm |
179 | sg:journal.1094205 | schema:issn | 0167-594X |
180 | ″ | ″ | 1573-7373 |
181 | ″ | schema:name | Journal of Neuro-Oncology |
182 | ″ | schema:publisher | Springer Nature |
183 | ″ | rdf:type | schema:Periodical |
184 | sg:person.01130310301.78 | schema:affiliation | grid-institutes:grid.450307.5 |
185 | ″ | schema:familyName | Sulpice |
186 | ″ | schema:givenName | Eric |
187 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130310301.78 |
188 | ″ | rdf:type | schema:Person |
189 | sg:person.01154766075.87 | schema:affiliation | grid-institutes:grid.462307.4 |
190 | ″ | schema:familyName | Chabardès |
191 | ″ | schema:givenName | Stéphan |
192 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154766075.87 |
193 | ″ | rdf:type | schema:Person |
194 | sg:person.01213103677.84 | schema:affiliation | grid-institutes:grid.450307.5 |
195 | ″ | schema:familyName | Ratel |
196 | ″ | schema:givenName | David |
197 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213103677.84 |
198 | ″ | rdf:type | schema:Person |
199 | sg:person.013101011031.01 | schema:affiliation | grid-institutes:grid.450307.5 |
200 | ″ | schema:familyName | Gaude |
201 | ″ | schema:givenName | Christophe |
202 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013101011031.01 |
203 | ″ | rdf:type | schema:Person |
204 | sg:person.07714464001.90 | schema:affiliation | grid-institutes:grid.450307.5 |
205 | ″ | schema:familyName | Fulbert |
206 | ″ | schema:givenName | Clémentine |
207 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714464001.90 |
208 | ″ | rdf:type | schema:Person |
209 | sg:pub.10.1007/s00401-016-1545-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021788062 |
210 | ″ | ″ | https://doi.org/10.1007/s00401-016-1545-1 |
211 | ″ | rdf:type | schema:CreativeWork |
212 | grid-institutes:grid.450307.5 | schema:alternateName | Univ. Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France |
213 | ″ | ″ | Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France |
214 | ″ | schema:name | Univ. Grenoble Alpes, CEA, INSERM, IRIG-BGE U1038, 38000, Grenoble, France |
215 | ″ | ″ | Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France |
216 | ″ | rdf:type | schema:Organization |
217 | grid-institutes:grid.462307.4 | schema:alternateName | Grenoble Institut des Neurosciences, Univ. Grenoble Alpes, Inserm U1216, 38000, Grenoble, France |
218 | ″ | schema:name | Grenoble Institut des Neurosciences, Univ. Grenoble Alpes, Inserm U1216, 38000, Grenoble, France |
219 | ″ | ″ | Neurosurgery Department, CHU Grenoble Alpes, 38000, Grenoble, France |
220 | ″ | ″ | Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France |
221 | ″ | rdf:type | schema:Organization |