Post-gadolinium 3-dimensional spatial, surface, and structural characteristics of glioblastomas differentiate pseudoprogression from true tumor progression View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

Madison R. Hansen, Edward Pan, Andrew Wilson, Morgan McCreary, Yeqi Wang, Thomas Stanley, Marco C. Pinho, Xiaohu Guo, Darin T. Okuda

ABSTRACT

PURPOSE: Pseudoprogression is often indistinguishable from true tumor progression on conventional 2-dimensional (2D) MRI in glioblastoma multiforme (GBM) patients. The aim of this study was to determine the association between post-gadolinium 3-dimensional (3D) characteristics and clinical state in GBM patients. METHODS: Standardized 3D brain MRI studies were performed, and contrast enhancing portions of each tumor were segmented and analyzed, blinded to clinical state, using principal component analysis (PCA), medial axis transformation (MAT), and coverage analysis. Associations between the 3D characteristics of the post-gadolinium enhanced regions and the clinical status of patients were performed. RESULTS: A total of 15 GBM patients [male: 11 (73%); median age (range): 62 years (36-72)] with a median disease duration of 6 months (range 2-24 months) were studied cross-sectionally with 6 (40%) patients identified with tumor progression. Post-gadolinium features corresponding to the group with progressive disease exhibited a more spherical and symmetric shape relative to their stable counterparts (p = 0.005). The predictive value of a more uniformly full post-gadolinium enhanced shell to clinical progression was determined with a sensitivity of 66.7% (95% CI 29.9-92.5), specificity of 100% (54.1-100), and PPV of 100% (p = 0.028, 2-tailed Fisher's exact test). There did not appear to be an association between the thickness of the contrast enhanced shell to clinical state. CONCLUSIONS: The application of 3D technology with post-gadolinium imaging data may inform healthcare providers with new insights into disease states based on spatial, surface, and structural patterns. More... »

PAGES

731-738

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11060-018-2920-7

DOI

http://dx.doi.org/10.1007/s11060-018-2920-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104465731

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29882044


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.267313.2", 
          "name": [
            "Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Clinical Center for Multiple Sclerosis, 5323 Harry Hines Blvd., 75390-8806, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hansen", 
        "givenName": "Madison R.", 
        "id": "sg:person.015144371415.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015144371415.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.267313.2", 
          "name": [
            "Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Simmons Comprehensive Cancer Center, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pan", 
        "givenName": "Edward", 
        "id": "sg:person.0741244140.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741244140.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Dallas", 
          "id": "https://www.grid.ac/institutes/grid.267323.1", 
          "name": [
            "Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilson", 
        "givenName": "Andrew", 
        "id": "sg:person.011124614432.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011124614432.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Baylor University", 
          "id": "https://www.grid.ac/institutes/grid.252890.4", 
          "name": [
            "Department of Statistical Science, Baylor University, Waco, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCreary", 
        "givenName": "Morgan", 
        "id": "sg:person.015361405444.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015361405444.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Dallas", 
          "id": "https://www.grid.ac/institutes/grid.267323.1", 
          "name": [
            "Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yeqi", 
        "id": "sg:person.016234724632.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016234724632.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Dallas", 
          "id": "https://www.grid.ac/institutes/grid.267323.1", 
          "name": [
            "Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stanley", 
        "givenName": "Thomas", 
        "id": "sg:person.07453714644.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07453714644.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.416214.4", 
          "name": [
            "Department of Radiology, Southwestern Medical Center, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinho", 
        "givenName": "Marco C.", 
        "id": "sg:person.01327026140.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327026140.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Dallas", 
          "id": "https://www.grid.ac/institutes/grid.267323.1", 
          "name": [
            "Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Xiaohu", 
        "id": "sg:person.016131511447.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016131511447.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.267313.2", 
          "name": [
            "Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Clinical Center for Multiple Sclerosis, 5323 Harry Hines Blvd., 75390-8806, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okuda", 
        "givenName": "Darin T.", 
        "id": "sg:person.01136610031.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136610031.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2008.02.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002077548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0164268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003820013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-12048-5_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004030463", 
          "https://doi.org/10.1007/978-3-319-12048-5_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2753755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004077260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/neuonc/nov189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004275238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10544-012-9721-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004301881", 
          "https://doi.org/10.1007/s10544-012-9721-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(08)70125-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004307323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rlu.0000000000001152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008676597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rlu.0000000000001152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008676597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.217.2.r00nv36377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010183767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a3634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012770623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00401-016-1545-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021788062", 
          "https://doi.org/10.1007/s00401-016-1545-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00701-004-0282-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021849809", 
          "https://doi.org/10.1007/s00701-004-0282-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(15)00088-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022890662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027450786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027450786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18632/oncotarget.13050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035476401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035644580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/neuonc/nop027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039490111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1754-9485.2012.02472.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040985457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041615694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2009.26.3541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043187529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/neuonc/nov029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043535325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2007.14.8163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045669840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/15228517-2008-066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064414369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0174620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084623797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2017/5813951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084977424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jon.12449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085377830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11060-018-2750-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100349041", 
          "https://doi.org/10.1007/s11060-018-2750-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11060-018-2750-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100349041", 
          "https://doi.org/10.1007/s11060-018-2750-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "PURPOSE: Pseudoprogression is often indistinguishable from true tumor progression on conventional 2-dimensional (2D) MRI in glioblastoma multiforme (GBM) patients. The aim of this study was to determine the association between post-gadolinium 3-dimensional (3D) characteristics and clinical state in GBM patients.\nMETHODS: Standardized 3D brain MRI studies were performed, and contrast enhancing portions of each tumor were segmented and analyzed, blinded to clinical state, using principal component analysis (PCA), medial axis transformation (MAT), and coverage analysis. Associations between the 3D characteristics of the post-gadolinium enhanced regions and the clinical status of patients were performed.\nRESULTS: A total of 15 GBM patients [male: 11 (73%); median age (range): 62\u00a0years (36-72)] with a median disease duration of 6\u00a0months (range 2-24\u00a0months) were studied cross-sectionally with 6 (40%) patients identified with tumor progression. Post-gadolinium features corresponding to the group with progressive disease exhibited a more spherical and symmetric shape relative to their stable counterparts (p\u2009=\u00a00.005). The predictive value of a more uniformly full post-gadolinium enhanced shell to clinical progression was determined with a sensitivity of 66.7% (95% CI 29.9-92.5), specificity of 100% (54.1-100), and PPV of 100% (p\u2009=\u20090.028, 2-tailed Fisher's exact test). There did not appear to be an association between the thickness of the contrast enhanced shell to clinical state.\nCONCLUSIONS: The application of 3D technology with post-gadolinium imaging data may inform healthcare providers with new insights into disease states based on spatial, surface, and structural patterns.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11060-018-2920-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094205", 
        "issn": [
          "0167-594X", 
          "1573-7373"
        ], 
        "name": "Journal of Neuro-Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "139"
      }
    ], 
    "name": "Post-gadolinium 3-dimensional spatial, surface, and structural characteristics of glioblastomas differentiate pseudoprogression from true tumor progression", 
    "pagination": "731-738", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d8ba88f9d01c3752a32f5677f4f9c2b83b5f91d9c41d1b6f1ae850da64e6aa6d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29882044"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8309335"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11060-018-2920-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104465731"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11060-018-2920-7", 
      "https://app.dimensions.ai/details/publication/pub.1104465731"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000557.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11060-018-2920-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11060-018-2920-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11060-018-2920-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11060-018-2920-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11060-018-2920-7'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11060-018-2920-7 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author N9b40540e69f3419a895fc202967db851
4 schema:citation sg:pub.10.1007/978-3-319-12048-5_1
5 sg:pub.10.1007/s00401-016-1545-1
6 sg:pub.10.1007/s00701-004-0282-8
7 sg:pub.10.1007/s10544-012-9721-0
8 sg:pub.10.1007/s11060-018-2750-7
9 https://doi.org/10.1002/mrm.22147
10 https://doi.org/10.1016/j.ejrad.2016.01.013
11 https://doi.org/10.1016/j.ijrobp.2008.02.078
12 https://doi.org/10.1016/s1470-2045(08)70125-6
13 https://doi.org/10.1016/s1470-2045(15)00088-1
14 https://doi.org/10.1093/neuonc/nop027
15 https://doi.org/10.1093/neuonc/nov029
16 https://doi.org/10.1093/neuonc/nov189
17 https://doi.org/10.1097/rlu.0000000000001152
18 https://doi.org/10.1111/j.1754-9485.2012.02472.x
19 https://doi.org/10.1111/jon.12449
20 https://doi.org/10.1145/2753755
21 https://doi.org/10.1148/radiol.09090663
22 https://doi.org/10.1148/radiology.217.2.r00nv36377
23 https://doi.org/10.1155/2017/5813951
24 https://doi.org/10.1200/jco.2007.14.8163
25 https://doi.org/10.1200/jco.2009.26.3541
26 https://doi.org/10.1215/15228517-2008-066
27 https://doi.org/10.1371/journal.pone.0164268
28 https://doi.org/10.1371/journal.pone.0174620
29 https://doi.org/10.18632/oncotarget.13050
30 https://doi.org/10.3174/ajnr.a3634
31 schema:datePublished 2018-09
32 schema:datePublishedReg 2018-09-01
33 schema:description PURPOSE: Pseudoprogression is often indistinguishable from true tumor progression on conventional 2-dimensional (2D) MRI in glioblastoma multiforme (GBM) patients. The aim of this study was to determine the association between post-gadolinium 3-dimensional (3D) characteristics and clinical state in GBM patients. METHODS: Standardized 3D brain MRI studies were performed, and contrast enhancing portions of each tumor were segmented and analyzed, blinded to clinical state, using principal component analysis (PCA), medial axis transformation (MAT), and coverage analysis. Associations between the 3D characteristics of the post-gadolinium enhanced regions and the clinical status of patients were performed. RESULTS: A total of 15 GBM patients [male: 11 (73%); median age (range): 62 years (36-72)] with a median disease duration of 6 months (range 2-24 months) were studied cross-sectionally with 6 (40%) patients identified with tumor progression. Post-gadolinium features corresponding to the group with progressive disease exhibited a more spherical and symmetric shape relative to their stable counterparts (p = 0.005). The predictive value of a more uniformly full post-gadolinium enhanced shell to clinical progression was determined with a sensitivity of 66.7% (95% CI 29.9-92.5), specificity of 100% (54.1-100), and PPV of 100% (p = 0.028, 2-tailed Fisher's exact test). There did not appear to be an association between the thickness of the contrast enhanced shell to clinical state. CONCLUSIONS: The application of 3D technology with post-gadolinium imaging data may inform healthcare providers with new insights into disease states based on spatial, surface, and structural patterns.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N47f6d1777c4d483bb25d8f0b131850d8
38 Nd73f6987e6004e3abf9796694871485c
39 sg:journal.1094205
40 schema:name Post-gadolinium 3-dimensional spatial, surface, and structural characteristics of glioblastomas differentiate pseudoprogression from true tumor progression
41 schema:pagination 731-738
42 schema:productId N01ed7070787a4220b41c8b9a02fe7158
43 N43eee6924dd843a9b3dc9e65f9555653
44 N4f70bbe58045491383489c199b021905
45 N5cd3316641e749a8b15bedb5a82fe50e
46 Nfaa978112bf44dadbaa301d452c7eba8
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104465731
48 https://doi.org/10.1007/s11060-018-2920-7
49 schema:sdDatePublished 2019-04-10T19:16
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N32cc3037ddd34f39939025c6f30a4397
52 schema:url https://link.springer.com/10.1007%2Fs11060-018-2920-7
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N01ed7070787a4220b41c8b9a02fe7158 schema:name pubmed_id
57 schema:value 29882044
58 rdf:type schema:PropertyValue
59 N147b27fc374a45c59aab68f78f2cabe3 rdf:first sg:person.011124614432.21
60 rdf:rest Nfa8f736791da4d0aac1ffea979822e38
61 N32cc3037ddd34f39939025c6f30a4397 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 N43eee6924dd843a9b3dc9e65f9555653 schema:name dimensions_id
64 schema:value pub.1104465731
65 rdf:type schema:PropertyValue
66 N47f6d1777c4d483bb25d8f0b131850d8 schema:issueNumber 3
67 rdf:type schema:PublicationIssue
68 N4f70bbe58045491383489c199b021905 schema:name readcube_id
69 schema:value d8ba88f9d01c3752a32f5677f4f9c2b83b5f91d9c41d1b6f1ae850da64e6aa6d
70 rdf:type schema:PropertyValue
71 N55276ed34e794defa145da4bdb972977 rdf:first sg:person.01327026140.09
72 rdf:rest Nc83b2045ca914d709a115f8e3fb0ccc3
73 N5cd3316641e749a8b15bedb5a82fe50e schema:name nlm_unique_id
74 schema:value 8309335
75 rdf:type schema:PropertyValue
76 N7b1e720848674223983bb6a684ca95b2 rdf:first sg:person.01136610031.05
77 rdf:rest rdf:nil
78 N8dd522d1a98c4b3fa6184a6988a7906d rdf:first sg:person.016234724632.83
79 rdf:rest Nefa6fe21ca8d4415b5e02810f780b95e
80 N9b40540e69f3419a895fc202967db851 rdf:first sg:person.015144371415.62
81 rdf:rest Nafcd55c5370c4de9a20a01c43f27cab5
82 Nafcd55c5370c4de9a20a01c43f27cab5 rdf:first sg:person.0741244140.25
83 rdf:rest N147b27fc374a45c59aab68f78f2cabe3
84 Nc83b2045ca914d709a115f8e3fb0ccc3 rdf:first sg:person.016131511447.98
85 rdf:rest N7b1e720848674223983bb6a684ca95b2
86 Nd73f6987e6004e3abf9796694871485c schema:volumeNumber 139
87 rdf:type schema:PublicationVolume
88 Nefa6fe21ca8d4415b5e02810f780b95e rdf:first sg:person.07453714644.53
89 rdf:rest N55276ed34e794defa145da4bdb972977
90 Nfa8f736791da4d0aac1ffea979822e38 rdf:first sg:person.015361405444.08
91 rdf:rest N8dd522d1a98c4b3fa6184a6988a7906d
92 Nfaa978112bf44dadbaa301d452c7eba8 schema:name doi
93 schema:value 10.1007/s11060-018-2920-7
94 rdf:type schema:PropertyValue
95 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
96 schema:name Medical and Health Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
99 schema:name Clinical Sciences
100 rdf:type schema:DefinedTerm
101 sg:journal.1094205 schema:issn 0167-594X
102 1573-7373
103 schema:name Journal of Neuro-Oncology
104 rdf:type schema:Periodical
105 sg:person.011124614432.21 schema:affiliation https://www.grid.ac/institutes/grid.267323.1
106 schema:familyName Wilson
107 schema:givenName Andrew
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011124614432.21
109 rdf:type schema:Person
110 sg:person.01136610031.05 schema:affiliation https://www.grid.ac/institutes/grid.267313.2
111 schema:familyName Okuda
112 schema:givenName Darin T.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136610031.05
114 rdf:type schema:Person
115 sg:person.01327026140.09 schema:affiliation https://www.grid.ac/institutes/grid.416214.4
116 schema:familyName Pinho
117 schema:givenName Marco C.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327026140.09
119 rdf:type schema:Person
120 sg:person.015144371415.62 schema:affiliation https://www.grid.ac/institutes/grid.267313.2
121 schema:familyName Hansen
122 schema:givenName Madison R.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015144371415.62
124 rdf:type schema:Person
125 sg:person.015361405444.08 schema:affiliation https://www.grid.ac/institutes/grid.252890.4
126 schema:familyName McCreary
127 schema:givenName Morgan
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015361405444.08
129 rdf:type schema:Person
130 sg:person.016131511447.98 schema:affiliation https://www.grid.ac/institutes/grid.267323.1
131 schema:familyName Guo
132 schema:givenName Xiaohu
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016131511447.98
134 rdf:type schema:Person
135 sg:person.016234724632.83 schema:affiliation https://www.grid.ac/institutes/grid.267323.1
136 schema:familyName Wang
137 schema:givenName Yeqi
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016234724632.83
139 rdf:type schema:Person
140 sg:person.0741244140.25 schema:affiliation https://www.grid.ac/institutes/grid.267313.2
141 schema:familyName Pan
142 schema:givenName Edward
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0741244140.25
144 rdf:type schema:Person
145 sg:person.07453714644.53 schema:affiliation https://www.grid.ac/institutes/grid.267323.1
146 schema:familyName Stanley
147 schema:givenName Thomas
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07453714644.53
149 rdf:type schema:Person
150 sg:pub.10.1007/978-3-319-12048-5_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004030463
151 https://doi.org/10.1007/978-3-319-12048-5_1
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00401-016-1545-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021788062
154 https://doi.org/10.1007/s00401-016-1545-1
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00701-004-0282-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021849809
157 https://doi.org/10.1007/s00701-004-0282-8
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s10544-012-9721-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004301881
160 https://doi.org/10.1007/s10544-012-9721-0
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s11060-018-2750-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100349041
163 https://doi.org/10.1007/s11060-018-2750-7
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/mrm.22147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027450786
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.ejrad.2016.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041615694
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.ijrobp.2008.02.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002077548
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/s1470-2045(08)70125-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004307323
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s1470-2045(15)00088-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022890662
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/neuonc/nop027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039490111
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/neuonc/nov029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043535325
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/neuonc/nov189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004275238
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1097/rlu.0000000000001152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008676597
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1111/j.1754-9485.2012.02472.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040985457
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1111/jon.12449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085377830
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1145/2753755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004077260
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1148/radiol.09090663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035644580
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1148/radiology.217.2.r00nv36377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010183767
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1155/2017/5813951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084977424
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1200/jco.2007.14.8163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045669840
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1200/jco.2009.26.3541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043187529
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1215/15228517-2008-066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064414369
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1371/journal.pone.0164268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003820013
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1371/journal.pone.0174620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084623797
204 rdf:type schema:CreativeWork
205 https://doi.org/10.18632/oncotarget.13050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035476401
206 rdf:type schema:CreativeWork
207 https://doi.org/10.3174/ajnr.a3634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012770623
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.252890.4 schema:alternateName Baylor University
210 schema:name Department of Statistical Science, Baylor University, Waco, TX, USA
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.267313.2 schema:alternateName The University of Texas Southwestern Medical Center
213 schema:name Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Simmons Comprehensive Cancer Center, Dallas, TX, USA
214 Neuroinnovation Program, Multiple Sclerosis & Neuroimmunology Imaging Program, Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Clinical Center for Multiple Sclerosis, 5323 Harry Hines Blvd., 75390-8806, Dallas, TX, USA
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.267323.1 schema:alternateName The University of Texas at Dallas
217 schema:name Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.416214.4 schema:alternateName Southwestern Medical Center
220 schema:name Department of Radiology, Southwestern Medical Center, Dallas, TX, USA
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...