P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-01-20

AUTHORS

K. Bajbouj, C. Mawrin, R. Hartig, J. Schulze-Luehrmann, A. Wilisch-Neumann, A. Roessner, R. Schneider-Stock

ABSTRACT

Glioblastomas are known to be highly chemoresistant, but HDAC inhibitors (HDACi) have been shown to be of therapeutic relevance for this aggressive tumor type. We treated U87 glioblastoma cells with trichostatin A (TSA) to define potential epigenetic targets for HDACi-mediated antitumor effects. Using a cDNA array analysis covering 96 cell cycle genes, cyclin-dependent kinase inhibitor p21WAF1 was identified as the major player in TSA-induced cell cycle arrest. TSA slightly inhibited proliferation and viability of U87 cells, cumulating in a G1/S cell cycle arrest. This effect was accompanied by a significant up-regulation of p53 and its transcriptional target p21WAF1 and by down-regulation of key G1/S regulators, such as cdk4, cdk6, and cyclin D1. Nevertheless, TSA did not induce apoptosis in U87 cells. As expected, TSA promoted the accumulation of total acetylated histones H3 and H4 and a decrease in endogenous HDAC activity. Characterizing the chromatin modulation around the p21WAF1 promoter after TSA treatment using chromatin immunoprecipitation, we found (1) a release of HDAC1, (2) an increase of acetylated H4 binding, and (3) enhanced recruitment of p53. p53-depleted U87 cells showed an abrogation of the G1/S arrest and re-entered the cell cycle. Immunofluorescence staining revealed that TSA induced the nuclear translocation of p21WAF1 verifying a cell cycle arrest. On the other hand, a significant portion of p21WAF1 was present in the cytoplasmic compartment causing apoptosis resistance. Furthermore, TSA-treated p53-mutant cell line U138 failed to show an induction in p21WAF1, showed a deficient G2/M checkpoint, and underwent mitotic catastrophe. We suggest that HDAC inhibition in combination with other clinically used drugs may be considered an effective strategy to overcome chemoresistance in glioblastoma cells. More... »

PAGES

503-516

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11060-011-0791-2

DOI

http://dx.doi.org/10.1007/s11060-011-0791-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032575936

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22270849


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Antineoplastic Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Apoptosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Proliferation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin Immunoprecipitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cyclin-Dependent Kinase Inhibitor p21", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Flow Cytometry", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescent Antibody Technique", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glioblastoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Histone Deacetylase Inhibitors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydroxamic Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Immunoblotting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oligonucleotide Array Sequence Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Real-Time Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reverse Transcriptase Polymerase Chain Reaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tumor Suppressor Protein p53", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biology, United Arab Emirates University, Al-Ain, UAE", 
          "id": "http://www.grid.ac/institutes/grid.43519.3a", 
          "name": [
            "Institute of Pathology, University of Magdeburg, 39120, Magdeburg, Germany", 
            "Department of Biology, United Arab Emirates University, Al-Ain, UAE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bajbouj", 
        "givenName": "K.", 
        "id": "sg:person.0643165021.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643165021.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Neuropathology, University of Magdeburg, 39120, Magdeburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5807.a", 
          "name": [
            "Institute of Neuropathology, University of Magdeburg, 39120, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mawrin", 
        "givenName": "C.", 
        "id": "sg:person.01143304676.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143304676.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Immunology, University of Magdeburg, 39120, Magdeburg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Immunology, University of Magdeburg, 39120, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hartig", 
        "givenName": "R.", 
        "id": "sg:person.01215760252.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215760252.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimental Tumorpathology, Institute of Pathology, University of Erlangen-Nuremberg, Universit\u00e4tsstrasse 22, 91054, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Experimental Tumorpathology, Institute of Pathology, University of Erlangen-Nuremberg, Universit\u00e4tsstrasse 22, 91054, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schulze-Luehrmann", 
        "givenName": "J.", 
        "id": "sg:person.01206715072.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206715072.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Neuropathology, University of Magdeburg, 39120, Magdeburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5807.a", 
          "name": [
            "Institute of Neuropathology, University of Magdeburg, 39120, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilisch-Neumann", 
        "givenName": "A.", 
        "id": "sg:person.01075171476.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075171476.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Pathology, University of Magdeburg, 39120, Magdeburg, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Pathology, University of Magdeburg, 39120, Magdeburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roessner", 
        "givenName": "A.", 
        "id": "sg:person.01346713452.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346713452.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Experimental Tumorpathology, Institute of Pathology, University of Erlangen-Nuremberg, Universit\u00e4tsstrasse 22, 91054, Erlangen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5330.5", 
          "name": [
            "Institute of Pathology, University of Magdeburg, 39120, Magdeburg, Germany", 
            "Experimental Tumorpathology, Institute of Pathology, University of Erlangen-Nuremberg, Universit\u00e4tsstrasse 22, 91054, Erlangen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schneider-Stock", 
        "givenName": "R.", 
        "id": "sg:person.0715044127.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715044127.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/43710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049319912", 
          "https://doi.org/10.1038/43710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35106079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033914466", 
          "https://doi.org/10.1038/35106079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.onc.1207528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049699432", 
          "https://doi.org/10.1038/sj.onc.1207528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014512819978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026481583", 
          "https://doi.org/10.1023/a:1014512819978"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-01-20", 
    "datePublishedReg": "2012-01-20", 
    "description": "Glioblastomas are known to be highly chemoresistant, but HDAC inhibitors (HDACi) have been shown to be of therapeutic relevance for this aggressive tumor type. We treated U87 glioblastoma cells with trichostatin A (TSA) to define potential epigenetic targets for HDACi-mediated antitumor effects. Using a cDNA array analysis covering 96 cell cycle genes, cyclin-dependent kinase inhibitor p21WAF1 was identified as the major player in TSA-induced cell cycle arrest. TSA slightly inhibited proliferation and viability of U87 cells, cumulating in a G1/S cell cycle arrest. This effect was accompanied by a significant up-regulation of p53 and its transcriptional target p21WAF1 and by down-regulation of key G1/S regulators, such as cdk4, cdk6, and cyclin D1. Nevertheless, TSA did not induce apoptosis in U87 cells. As expected, TSA promoted the accumulation of total acetylated histones H3 and H4 and a decrease in endogenous HDAC activity. Characterizing the chromatin modulation around the p21WAF1 promoter after TSA treatment using chromatin immunoprecipitation, we found (1) a release of HDAC1, (2) an increase of acetylated H4 binding, and (3) enhanced recruitment of p53. p53-depleted U87 cells showed an abrogation of the G1/S arrest and re-entered the cell cycle. Immunofluorescence staining revealed that TSA induced the nuclear translocation of p21WAF1 verifying a cell cycle arrest. On the other hand, a significant portion of p21WAF1 was present in the cytoplasmic compartment causing apoptosis resistance. Furthermore, TSA-treated p53-mutant cell line U138 failed to show an induction in p21WAF1, showed a deficient G2/M checkpoint, and underwent mitotic catastrophe. We suggest that HDAC inhibition in combination with other clinically used drugs may be considered an effective strategy to overcome chemoresistance in glioblastoma cells.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11060-011-0791-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094205", 
        "issn": [
          "0167-594X", 
          "1573-7373"
        ], 
        "name": "Journal of Neuro-Oncology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "107"
      }
    ], 
    "keywords": [
      "cell cycle arrest", 
      "HDAC inhibitors", 
      "trichostatin A", 
      "U87 cells", 
      "cycle arrest", 
      "glioblastoma cells", 
      "G1/S cell cycle arrest", 
      "aggressive tumor type", 
      "pro-apoptotic effects", 
      "G1/S arrest", 
      "cDNA array analysis", 
      "cyclin-dependent kinase inhibitor p21WAF1", 
      "antitumor effects", 
      "tumor types", 
      "endogenous HDAC activity", 
      "HDAC inhibition", 
      "therapeutic relevance", 
      "potential epigenetic targets", 
      "cyclin D1", 
      "U87 glioblastoma cells", 
      "HDAC activity", 
      "acetylated histone H3", 
      "TSA treatment", 
      "nuclear translocation", 
      "recruitment of p53", 
      "apoptosis resistance", 
      "arrest", 
      "G1/S regulators", 
      "p21WAF1", 
      "G2/M checkpoint", 
      "array analysis", 
      "release of HDAC1", 
      "transcriptional targets", 
      "cell cycle genes", 
      "cells", 
      "epigenetic targets", 
      "p53", 
      "mitotic catastrophe", 
      "p21WAF1 promoter", 
      "cell cycle", 
      "chromatin modulation", 
      "effective strategy", 
      "cytoplasmic compartment", 
      "histone H3", 
      "chromatin immunoprecipitation", 
      "cycle genes", 
      "chemoresistance", 
      "glioblastoma", 
      "drugs", 
      "immunofluorescence", 
      "CDK4", 
      "target", 
      "treatment", 
      "CDK6", 
      "abrogation", 
      "U138", 
      "effect", 
      "apoptosis", 
      "inhibitors", 
      "inhibition", 
      "proliferation", 
      "D1", 
      "induction", 
      "HDAC1", 
      "major players", 
      "immunoprecipitation", 
      "release", 
      "recruitment", 
      "compartments", 
      "modulation", 
      "translocation", 
      "decrease", 
      "activity", 
      "viability", 
      "genes", 
      "significant portion", 
      "accumulation", 
      "increase", 
      "relevance", 
      "regulator", 
      "promoter", 
      "binding", 
      "H3", 
      "H4", 
      "resistance", 
      "checkpoint", 
      "combination", 
      "portion", 
      "strategies", 
      "types", 
      "hand", 
      "analysis", 
      "players", 
      "cycle", 
      "catastrophe", 
      "kinase inhibitor p21WAF1", 
      "inhibitor p21WAF1", 
      "S cell cycle arrest", 
      "key G1/S regulators", 
      "S regulators", 
      "total acetylated histones H3", 
      "acetylated H4 binding", 
      "H4 binding", 
      "S arrest", 
      "p53-mutant cell line U138", 
      "cell line U138", 
      "line U138", 
      "deficient G2/M checkpoint", 
      "M checkpoint", 
      "underwent mitotic catastrophe"
    ], 
    "name": "P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells", 
    "pagination": "503-516", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032575936"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11060-011-0791-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22270849"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11060-011-0791-2", 
      "https://app.dimensions.ai/details/publication/pub.1032575936"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11060-011-0791-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11060-011-0791-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11060-011-0791-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11060-011-0791-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11060-011-0791-2'


 

This table displays all metadata directly associated to this object as RDF triples.

319 TRIPLES      22 PREDICATES      159 URIs      146 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11060-011-0791-2 schema:about N03dc0fbdc9ce49a0b270900369ed4c92
2 N2260801423724a1b81136fb30da9e837
3 N295423b417a54c31896bc0a22647a4cb
4 N32f0e5eed98e47d58804a0504446b265
5 N34d34fe6e34341279bf9ba74672f9662
6 N4c501bfd17e74de597cb61754939653c
7 N55333879b1c64421854767600a7aa4c4
8 N5e93ccdd0b4f4049bc36512117a072db
9 N653c70b7710b48c4aa0f3e0ce48fb2fb
10 N711539d1b5a7443380ddcf57f9b1741e
11 N8a68059e93794f4a95071220c961d0d7
12 N9a46b808f8614553bd5b2d33ac04d618
13 Na396347c3de8452db9df345b5ac9872b
14 Nb24516ceb0534ce88bfb3954541173a6
15 Nc1881da911564c2d99b4bc8efb2619e8
16 Ncc2cc0dd1fe94cbb9ed8cd8d6f3941e1
17 Neba4c6ec86be47458abb98c54de6e6bf
18 Nf5242fa2a2514f078a115b8a94d6cd54
19 anzsrc-for:11
20 anzsrc-for:1109
21 anzsrc-for:1112
22 schema:author N4a1e27a03f534acaba510ffdee061e93
23 schema:citation sg:pub.10.1023/a:1014512819978
24 sg:pub.10.1038/35106079
25 sg:pub.10.1038/43710
26 sg:pub.10.1038/sj.onc.1207528
27 schema:datePublished 2012-01-20
28 schema:datePublishedReg 2012-01-20
29 schema:description Glioblastomas are known to be highly chemoresistant, but HDAC inhibitors (HDACi) have been shown to be of therapeutic relevance for this aggressive tumor type. We treated U87 glioblastoma cells with trichostatin A (TSA) to define potential epigenetic targets for HDACi-mediated antitumor effects. Using a cDNA array analysis covering 96 cell cycle genes, cyclin-dependent kinase inhibitor p21WAF1 was identified as the major player in TSA-induced cell cycle arrest. TSA slightly inhibited proliferation and viability of U87 cells, cumulating in a G1/S cell cycle arrest. This effect was accompanied by a significant up-regulation of p53 and its transcriptional target p21WAF1 and by down-regulation of key G1/S regulators, such as cdk4, cdk6, and cyclin D1. Nevertheless, TSA did not induce apoptosis in U87 cells. As expected, TSA promoted the accumulation of total acetylated histones H3 and H4 and a decrease in endogenous HDAC activity. Characterizing the chromatin modulation around the p21WAF1 promoter after TSA treatment using chromatin immunoprecipitation, we found (1) a release of HDAC1, (2) an increase of acetylated H4 binding, and (3) enhanced recruitment of p53. p53-depleted U87 cells showed an abrogation of the G1/S arrest and re-entered the cell cycle. Immunofluorescence staining revealed that TSA induced the nuclear translocation of p21WAF1 verifying a cell cycle arrest. On the other hand, a significant portion of p21WAF1 was present in the cytoplasmic compartment causing apoptosis resistance. Furthermore, TSA-treated p53-mutant cell line U138 failed to show an induction in p21WAF1, showed a deficient G2/M checkpoint, and underwent mitotic catastrophe. We suggest that HDAC inhibition in combination with other clinically used drugs may be considered an effective strategy to overcome chemoresistance in glioblastoma cells.
30 schema:genre article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf Nb7dd31bc0ff54507a1b63b9adbee6bf7
34 Nf76c588344264bbfaea0b9f9f6c25f19
35 sg:journal.1094205
36 schema:keywords CDK4
37 CDK6
38 D1
39 G1/S arrest
40 G1/S cell cycle arrest
41 G1/S regulators
42 G2/M checkpoint
43 H3
44 H4
45 H4 binding
46 HDAC activity
47 HDAC inhibition
48 HDAC inhibitors
49 HDAC1
50 M checkpoint
51 S arrest
52 S cell cycle arrest
53 S regulators
54 TSA treatment
55 U138
56 U87 cells
57 U87 glioblastoma cells
58 abrogation
59 accumulation
60 acetylated H4 binding
61 acetylated histone H3
62 activity
63 aggressive tumor type
64 analysis
65 antitumor effects
66 apoptosis
67 apoptosis resistance
68 array analysis
69 arrest
70 binding
71 cDNA array analysis
72 catastrophe
73 cell cycle
74 cell cycle arrest
75 cell cycle genes
76 cell line U138
77 cells
78 checkpoint
79 chemoresistance
80 chromatin immunoprecipitation
81 chromatin modulation
82 combination
83 compartments
84 cycle
85 cycle arrest
86 cycle genes
87 cyclin D1
88 cyclin-dependent kinase inhibitor p21WAF1
89 cytoplasmic compartment
90 decrease
91 deficient G2/M checkpoint
92 drugs
93 effect
94 effective strategy
95 endogenous HDAC activity
96 epigenetic targets
97 genes
98 glioblastoma
99 glioblastoma cells
100 hand
101 histone H3
102 immunofluorescence
103 immunoprecipitation
104 increase
105 induction
106 inhibition
107 inhibitor p21WAF1
108 inhibitors
109 key G1/S regulators
110 kinase inhibitor p21WAF1
111 line U138
112 major players
113 mitotic catastrophe
114 modulation
115 nuclear translocation
116 p21WAF1
117 p21WAF1 promoter
118 p53
119 p53-mutant cell line U138
120 players
121 portion
122 potential epigenetic targets
123 pro-apoptotic effects
124 proliferation
125 promoter
126 recruitment
127 recruitment of p53
128 regulator
129 release
130 release of HDAC1
131 relevance
132 resistance
133 significant portion
134 strategies
135 target
136 therapeutic relevance
137 total acetylated histones H3
138 transcriptional targets
139 translocation
140 treatment
141 trichostatin A
142 tumor types
143 types
144 underwent mitotic catastrophe
145 viability
146 schema:name P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells
147 schema:pagination 503-516
148 schema:productId N7ec5b082ae7e43cf9731d51093c67fd5
149 Nc1b538c38c9b40c89813ddc38409f5c2
150 Ncaa0756ffc7d441cb32873796edab184
151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032575936
152 https://doi.org/10.1007/s11060-011-0791-2
153 schema:sdDatePublished 2022-01-01T18:28
154 schema:sdLicense https://scigraph.springernature.com/explorer/license/
155 schema:sdPublisher Nfb5de4d1f15d40c8b63d418417626835
156 schema:url https://doi.org/10.1007/s11060-011-0791-2
157 sgo:license sg:explorer/license/
158 sgo:sdDataset articles
159 rdf:type schema:ScholarlyArticle
160 N03dc0fbdc9ce49a0b270900369ed4c92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Hydroxamic Acids
162 rdf:type schema:DefinedTerm
163 N2260801423724a1b81136fb30da9e837 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Cell Proliferation
165 rdf:type schema:DefinedTerm
166 N295423b417a54c31896bc0a22647a4cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Oligonucleotide Array Sequence Analysis
168 rdf:type schema:DefinedTerm
169 N30b176c72b6148e2939432d659a748ef rdf:first sg:person.0715044127.21
170 rdf:rest rdf:nil
171 N32f0e5eed98e47d58804a0504446b265 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Immunoblotting
173 rdf:type schema:DefinedTerm
174 N34d34fe6e34341279bf9ba74672f9662 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Chromatin Immunoprecipitation
176 rdf:type schema:DefinedTerm
177 N4a1e27a03f534acaba510ffdee061e93 rdf:first sg:person.0643165021.66
178 rdf:rest N5064f9987b2e4aa1bd5956eb9a0de369
179 N4c501bfd17e74de597cb61754939653c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Humans
181 rdf:type schema:DefinedTerm
182 N5064f9987b2e4aa1bd5956eb9a0de369 rdf:first sg:person.01143304676.41
183 rdf:rest N668b52648f324218b318ef0f14d2f6d1
184 N55333879b1c64421854767600a7aa4c4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Flow Cytometry
186 rdf:type schema:DefinedTerm
187 N5e93ccdd0b4f4049bc36512117a072db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Apoptosis
189 rdf:type schema:DefinedTerm
190 N653c70b7710b48c4aa0f3e0ce48fb2fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Antineoplastic Agents
192 rdf:type schema:DefinedTerm
193 N668b52648f324218b318ef0f14d2f6d1 rdf:first sg:person.01215760252.36
194 rdf:rest N88da3b89fda24dcb849afe1c46e06645
195 N711539d1b5a7443380ddcf57f9b1741e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Cell Line, Tumor
197 rdf:type schema:DefinedTerm
198 N7ec5b082ae7e43cf9731d51093c67fd5 schema:name doi
199 schema:value 10.1007/s11060-011-0791-2
200 rdf:type schema:PropertyValue
201 N88da3b89fda24dcb849afe1c46e06645 rdf:first sg:person.01206715072.27
202 rdf:rest Nba918bfea41645f188cdc626114c51cb
203 N8a68059e93794f4a95071220c961d0d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
204 schema:name Glioblastoma
205 rdf:type schema:DefinedTerm
206 N9a46b808f8614553bd5b2d33ac04d618 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
207 schema:name Cyclin-Dependent Kinase Inhibitor p21
208 rdf:type schema:DefinedTerm
209 Na396347c3de8452db9df345b5ac9872b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
210 schema:name Tumor Suppressor Protein p53
211 rdf:type schema:DefinedTerm
212 Na6c41c82cd4b43ca95fd1bd2905fbdfc rdf:first sg:person.01346713452.35
213 rdf:rest N30b176c72b6148e2939432d659a748ef
214 Nb24516ceb0534ce88bfb3954541173a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Real-Time Polymerase Chain Reaction
216 rdf:type schema:DefinedTerm
217 Nb7dd31bc0ff54507a1b63b9adbee6bf7 schema:volumeNumber 107
218 rdf:type schema:PublicationVolume
219 Nba918bfea41645f188cdc626114c51cb rdf:first sg:person.01075171476.86
220 rdf:rest Na6c41c82cd4b43ca95fd1bd2905fbdfc
221 Nc1881da911564c2d99b4bc8efb2619e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
222 schema:name Reverse Transcriptase Polymerase Chain Reaction
223 rdf:type schema:DefinedTerm
224 Nc1b538c38c9b40c89813ddc38409f5c2 schema:name pubmed_id
225 schema:value 22270849
226 rdf:type schema:PropertyValue
227 Ncaa0756ffc7d441cb32873796edab184 schema:name dimensions_id
228 schema:value pub.1032575936
229 rdf:type schema:PropertyValue
230 Ncc2cc0dd1fe94cbb9ed8cd8d6f3941e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
231 schema:name Gene Expression Profiling
232 rdf:type schema:DefinedTerm
233 Neba4c6ec86be47458abb98c54de6e6bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
234 schema:name Histone Deacetylase Inhibitors
235 rdf:type schema:DefinedTerm
236 Nf5242fa2a2514f078a115b8a94d6cd54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
237 schema:name Fluorescent Antibody Technique
238 rdf:type schema:DefinedTerm
239 Nf76c588344264bbfaea0b9f9f6c25f19 schema:issueNumber 3
240 rdf:type schema:PublicationIssue
241 Nfb5de4d1f15d40c8b63d418417626835 schema:name Springer Nature - SN SciGraph project
242 rdf:type schema:Organization
243 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
244 schema:name Medical and Health Sciences
245 rdf:type schema:DefinedTerm
246 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
247 schema:name Neurosciences
248 rdf:type schema:DefinedTerm
249 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
250 schema:name Oncology and Carcinogenesis
251 rdf:type schema:DefinedTerm
252 sg:journal.1094205 schema:issn 0167-594X
253 1573-7373
254 schema:name Journal of Neuro-Oncology
255 schema:publisher Springer Nature
256 rdf:type schema:Periodical
257 sg:person.01075171476.86 schema:affiliation grid-institutes:grid.5807.a
258 schema:familyName Wilisch-Neumann
259 schema:givenName A.
260 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075171476.86
261 rdf:type schema:Person
262 sg:person.01143304676.41 schema:affiliation grid-institutes:grid.5807.a
263 schema:familyName Mawrin
264 schema:givenName C.
265 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143304676.41
266 rdf:type schema:Person
267 sg:person.01206715072.27 schema:affiliation grid-institutes:grid.5330.5
268 schema:familyName Schulze-Luehrmann
269 schema:givenName J.
270 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206715072.27
271 rdf:type schema:Person
272 sg:person.01215760252.36 schema:affiliation grid-institutes:None
273 schema:familyName Hartig
274 schema:givenName R.
275 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01215760252.36
276 rdf:type schema:Person
277 sg:person.01346713452.35 schema:affiliation grid-institutes:None
278 schema:familyName Roessner
279 schema:givenName A.
280 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346713452.35
281 rdf:type schema:Person
282 sg:person.0643165021.66 schema:affiliation grid-institutes:grid.43519.3a
283 schema:familyName Bajbouj
284 schema:givenName K.
285 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643165021.66
286 rdf:type schema:Person
287 sg:person.0715044127.21 schema:affiliation grid-institutes:grid.5330.5
288 schema:familyName Schneider-Stock
289 schema:givenName R.
290 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715044127.21
291 rdf:type schema:Person
292 sg:pub.10.1023/a:1014512819978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026481583
293 https://doi.org/10.1023/a:1014512819978
294 rdf:type schema:CreativeWork
295 sg:pub.10.1038/35106079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033914466
296 https://doi.org/10.1038/35106079
297 rdf:type schema:CreativeWork
298 sg:pub.10.1038/43710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049319912
299 https://doi.org/10.1038/43710
300 rdf:type schema:CreativeWork
301 sg:pub.10.1038/sj.onc.1207528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049699432
302 https://doi.org/10.1038/sj.onc.1207528
303 rdf:type schema:CreativeWork
304 grid-institutes:None schema:alternateName Institute of Immunology, University of Magdeburg, 39120, Magdeburg, Germany
305 Institute of Pathology, University of Magdeburg, 39120, Magdeburg, Germany
306 schema:name Institute of Immunology, University of Magdeburg, 39120, Magdeburg, Germany
307 Institute of Pathology, University of Magdeburg, 39120, Magdeburg, Germany
308 rdf:type schema:Organization
309 grid-institutes:grid.43519.3a schema:alternateName Department of Biology, United Arab Emirates University, Al-Ain, UAE
310 schema:name Department of Biology, United Arab Emirates University, Al-Ain, UAE
311 Institute of Pathology, University of Magdeburg, 39120, Magdeburg, Germany
312 rdf:type schema:Organization
313 grid-institutes:grid.5330.5 schema:alternateName Experimental Tumorpathology, Institute of Pathology, University of Erlangen-Nuremberg, Universitätsstrasse 22, 91054, Erlangen, Germany
314 schema:name Experimental Tumorpathology, Institute of Pathology, University of Erlangen-Nuremberg, Universitätsstrasse 22, 91054, Erlangen, Germany
315 Institute of Pathology, University of Magdeburg, 39120, Magdeburg, Germany
316 rdf:type schema:Organization
317 grid-institutes:grid.5807.a schema:alternateName Institute of Neuropathology, University of Magdeburg, 39120, Magdeburg, Germany
318 schema:name Institute of Neuropathology, University of Magdeburg, 39120, Magdeburg, Germany
319 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...