Possible role of single-voxel 1H-MRS in differential diagnosis of suprasellar tumors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-01

AUTHORS

Mikhail F. Chernov, Takakazu Kawamata, Kosaku Amano, Yuko Ono, Takashi Suzuki, Ryoichi Nakamura, Yoshihiro Muragaki, Hiroshi Iseki, Osami Kubo, Tomokatsu Hori, Kintomo Takakura

ABSTRACT

The objective of the present study was investigation of the possible role of proton magnetic resonance spectroscopy ((1)H-MRS) for differential diagnosis of suprasellar tumors. Forty patients (23 men and 17 women; median age, 45 years) with suprasellar, hypothalamic, and third ventricle neoplasms underwent long-echo (TR: 2000 ms, TE: 136 ms, 128-256 acquisitions) single-voxel (1)H-MRS before surgical treatment. The volume of the voxel was either 3.4 cc or 8 cc. Spectroscopic data were analyzed by calculation of the various metabolite ratios as well as by determination of the type of the pathological (1)H-MR spectra. There were 19 pituitary adenomas, 7 gliomas, 5 craniopharyngiomas, 3 chordomas, meningioma, hemangiopericytoma, malignant lymphoma, germinoma, Rathke cleft cyst, and hypothalamic hamartoma (one of each). Six tumors were recurrent after initial surgical resection with or without irradiation. Comparison of the individual metabolite ratios revealed only few subtle differences among neoplasms. In the same time, pattern analysis with determination of the type of the pathological (1)H-MR spectra disclosed certain specific characteristics, which seemingly can be used for tumor typing. Meanwhile, metabolic imaging was less effective for characterization of recurrent neoplasms. In conclusion, in cases of initially diagnosed suprasellar tumors with involvement of the hypothalamus and extension into the third ventricle pattern analysis of the single-voxel (1)H-MRS can provide valuable information, which, in addition to structural MRI, can be effectively used for diagnostic purposes. More... »

PAGES

191-198

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y

DOI

http://dx.doi.org/10.1007/s11060-008-9698-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044534109

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18825316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aspartic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Astrocytoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Choline", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Craniopharyngioma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Creatine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pituitary Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Supratentorial Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernov", 
        "givenName": "Mikhail F.", 
        "id": "sg:person.01172466117.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172466117.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawamata", 
        "givenName": "Takakazu", 
        "id": "sg:person.0617041674.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617041674.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amano", 
        "givenName": "Kosaku", 
        "id": "sg:person.01033010241.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033010241.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neuroradiology, Neurological Institute, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ono", 
        "givenName": "Yuko", 
        "id": "sg:person.0670070730.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670070730.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Takashi", 
        "id": "sg:person.0736131364.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736131364.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Ryoichi", 
        "id": "sg:person.01360711753.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360711753.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muragaki", 
        "givenName": "Yoshihiro", 
        "id": "sg:person.01367567653.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367567653.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iseki", 
        "givenName": "Hiroshi", 
        "id": "sg:person.0644467013.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644467013.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubo", 
        "givenName": "Osami", 
        "id": "sg:person.0673732030.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673732030.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hori", 
        "givenName": "Tomokatsu", 
        "id": "sg:person.0751230340.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751230340.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takakura", 
        "givenName": "Kintomo", 
        "id": "sg:person.01371312217.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371312217.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1177/197140090802100308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000149739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/197140090802100308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000149739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clineuro.2006.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005676642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/153303460200100103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006409296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/153303460200100103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006409296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00701-007-1234-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009804861", 
          "https://doi.org/10.1007/s00701-007-1234-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00701-007-1234-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009804861", 
          "https://doi.org/10.1007/s00701-007-1234-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-001-0760-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013917389", 
          "https://doi.org/10.1007/s00234-001-0760-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.seminoncol.2004.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014457403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0546-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014708266", 
          "https://doi.org/10.1007/s00330-006-0546-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0546-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014708266", 
          "https://doi.org/10.1007/s00330-006-0546-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00873976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018811705", 
          "https://doi.org/10.1007/bf00873976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2152/jmi.53.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043336538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-006-0589-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645429", 
          "https://doi.org/10.1007/s10147-006-0589-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-006-0589-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645429", 
          "https://doi.org/10.1007/s10147-006-0589-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077512675", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-01", 
    "datePublishedReg": "2009-01-01", 
    "description": "The objective of the present study was investigation of the possible role of proton magnetic resonance spectroscopy ((1)H-MRS) for differential diagnosis of suprasellar tumors. Forty patients (23 men and 17 women; median age, 45 years) with suprasellar, hypothalamic, and third ventricle neoplasms underwent long-echo (TR: 2000 ms, TE: 136 ms, 128-256 acquisitions) single-voxel (1)H-MRS before surgical treatment. The volume of the voxel was either 3.4 cc or 8 cc. Spectroscopic data were analyzed by calculation of the various metabolite ratios as well as by determination of the type of the pathological (1)H-MR spectra. There were 19 pituitary adenomas, 7 gliomas, 5 craniopharyngiomas, 3 chordomas, meningioma, hemangiopericytoma, malignant lymphoma, germinoma, Rathke cleft cyst, and hypothalamic hamartoma (one of each). Six tumors were recurrent after initial surgical resection with or without irradiation. Comparison of the individual metabolite ratios revealed only few subtle differences among neoplasms. In the same time, pattern analysis with determination of the type of the pathological (1)H-MR spectra disclosed certain specific characteristics, which seemingly can be used for tumor typing. Meanwhile, metabolic imaging was less effective for characterization of recurrent neoplasms. In conclusion, in cases of initially diagnosed suprasellar tumors with involvement of the hypothalamus and extension into the third ventricle pattern analysis of the single-voxel (1)H-MRS can provide valuable information, which, in addition to structural MRI, can be effectively used for diagnostic purposes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11060-008-9698-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094205", 
        "issn": [
          "0167-594X", 
          "1573-7373"
        ], 
        "name": "Journal of Neuro-Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "Possible role of single-voxel 1H-MRS in differential diagnosis of suprasellar tumors", 
    "pagination": "191-198", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d421b98366124e2afcaff0d2ea4dd500548282b4693c5e0b0cb6062da9f114b0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18825316"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8309335"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11060-008-9698-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044534109"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11060-008-9698-y", 
      "https://app.dimensions.ai/details/publication/pub.1044534109"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000534.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11060-008-9698-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      57 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11060-008-9698-y schema:about N0359ba212d7548c29a243b22298e5877
2 N181e475a174240c881d5e8de604fd1b8
3 N2defd385813a46b89b027d5128827cba
4 N3f41d4022f9249e78673e865589e3ae1
5 N4146afa1db3a41cea24ef37b104cd77e
6 N4b2730497609483cabcc154b3d9bd8d5
7 N530a35eea31d4496b020fd41ae46fbc9
8 N59b5130b89cc4933ad43bb109e487519
9 N5d78449412744610a35b69b58cf1473c
10 N6416ab33240147f69f4c615c7a40e124
11 N750dedae108c44ab91b194410ec610b5
12 N8532d054ab894ff9af2821057bdaba88
13 Naddaa2bcf6724901926bc074d4bcaae0
14 Nb1c6db17bd0d44148a7fefb627810dfd
15 Nc285311f8bf64d40b7219859ea5f7080
16 Nf502daa684cf4b22825f2d21edbef839
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author Ndb9d62f5cf9a4567bf88d91438648ed5
20 schema:citation sg:pub.10.1007/bf00873976
21 sg:pub.10.1007/s00234-001-0760-0
22 sg:pub.10.1007/s00330-006-0546-1
23 sg:pub.10.1007/s00701-007-1234-x
24 sg:pub.10.1007/s10147-006-0589-y
25 https://app.dimensions.ai/details/publication/pub.1077512675
26 https://doi.org/10.1016/j.clineuro.2006.11.001
27 https://doi.org/10.1053/j.seminoncol.2004.07.003
28 https://doi.org/10.1177/153303460200100103
29 https://doi.org/10.1177/197140090802100308
30 https://doi.org/10.2152/jmi.53.199
31 https://doi.org/10.3171/jns.2006.105.1.6
32 schema:datePublished 2009-01
33 schema:datePublishedReg 2009-01-01
34 schema:description The objective of the present study was investigation of the possible role of proton magnetic resonance spectroscopy ((1)H-MRS) for differential diagnosis of suprasellar tumors. Forty patients (23 men and 17 women; median age, 45 years) with suprasellar, hypothalamic, and third ventricle neoplasms underwent long-echo (TR: 2000 ms, TE: 136 ms, 128-256 acquisitions) single-voxel (1)H-MRS before surgical treatment. The volume of the voxel was either 3.4 cc or 8 cc. Spectroscopic data were analyzed by calculation of the various metabolite ratios as well as by determination of the type of the pathological (1)H-MR spectra. There were 19 pituitary adenomas, 7 gliomas, 5 craniopharyngiomas, 3 chordomas, meningioma, hemangiopericytoma, malignant lymphoma, germinoma, Rathke cleft cyst, and hypothalamic hamartoma (one of each). Six tumors were recurrent after initial surgical resection with or without irradiation. Comparison of the individual metabolite ratios revealed only few subtle differences among neoplasms. In the same time, pattern analysis with determination of the type of the pathological (1)H-MR spectra disclosed certain specific characteristics, which seemingly can be used for tumor typing. Meanwhile, metabolic imaging was less effective for characterization of recurrent neoplasms. In conclusion, in cases of initially diagnosed suprasellar tumors with involvement of the hypothalamus and extension into the third ventricle pattern analysis of the single-voxel (1)H-MRS can provide valuable information, which, in addition to structural MRI, can be effectively used for diagnostic purposes.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N5da5111623fe4782875f2b58cc6c702a
39 Nb55da22381274b649f4117fe4f20c28d
40 sg:journal.1094205
41 schema:name Possible role of single-voxel 1H-MRS in differential diagnosis of suprasellar tumors
42 schema:pagination 191-198
43 schema:productId N84ec572cdd3543e8abc24ee0c541c097
44 N9df822324d1a47f8bf5465b0ac32d8b9
45 N9e6994daae9c4caa850f9dbb0bc6cfdd
46 Nbabf5a18a96742e384f82a2085d5ca55
47 Ne1e1fb2a114d4680a2469f3d91c83cc3
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044534109
49 https://doi.org/10.1007/s11060-008-9698-y
50 schema:sdDatePublished 2019-04-10T16:46
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nffa1e098749b4c4b9a2363733e955ce7
53 schema:url http://link.springer.com/10.1007%2Fs11060-008-9698-y
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0359ba212d7548c29a243b22298e5877 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
58 schema:name Aspartic Acid
59 rdf:type schema:DefinedTerm
60 N0d7290b576134c50b72e4ca3a1a6cbe4 rdf:first sg:person.01371312217.38
61 rdf:rest rdf:nil
62 N181e475a174240c881d5e8de604fd1b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Astrocytoma
64 rdf:type schema:DefinedTerm
65 N2defd385813a46b89b027d5128827cba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Adult
67 rdf:type schema:DefinedTerm
68 N3f41d4022f9249e78673e865589e3ae1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Female
70 rdf:type schema:DefinedTerm
71 N4146afa1db3a41cea24ef37b104cd77e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Craniopharyngioma
73 rdf:type schema:DefinedTerm
74 N4b2730497609483cabcc154b3d9bd8d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Magnetic Resonance Spectroscopy
76 rdf:type schema:DefinedTerm
77 N530a35eea31d4496b020fd41ae46fbc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Choline
79 rdf:type schema:DefinedTerm
80 N59b5130b89cc4933ad43bb109e487519 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Chi-Square Distribution
82 rdf:type schema:DefinedTerm
83 N5d78449412744610a35b69b58cf1473c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Supratentorial Neoplasms
85 rdf:type schema:DefinedTerm
86 N5da5111623fe4782875f2b58cc6c702a schema:issueNumber 2
87 rdf:type schema:PublicationIssue
88 N6416ab33240147f69f4c615c7a40e124 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Male
90 rdf:type schema:DefinedTerm
91 N750dedae108c44ab91b194410ec610b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Pituitary Neoplasms
93 rdf:type schema:DefinedTerm
94 N7619ffce917d4ebdbf177fee018c615b rdf:first sg:person.0673732030.56
95 rdf:rest Na3c6dcc2d25641fd93ef18b828036817
96 N84ec572cdd3543e8abc24ee0c541c097 schema:name dimensions_id
97 schema:value pub.1044534109
98 rdf:type schema:PropertyValue
99 N8532d054ab894ff9af2821057bdaba88 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Diagnosis, Differential
101 rdf:type schema:DefinedTerm
102 N896db86f2cbd416d8a61eac059aa2d20 rdf:first sg:person.0736131364.05
103 rdf:rest Nd5a57fb450904c1baf6e418c330ded65
104 N9df822324d1a47f8bf5465b0ac32d8b9 schema:name nlm_unique_id
105 schema:value 8309335
106 rdf:type schema:PropertyValue
107 N9e6994daae9c4caa850f9dbb0bc6cfdd schema:name pubmed_id
108 schema:value 18825316
109 rdf:type schema:PropertyValue
110 Na3c6a02ccc764e8184125fe8ee9a8989 rdf:first sg:person.01367567653.82
111 rdf:rest Nb51b6040c2c94ab1bc2fa1823c4e9da6
112 Na3c6dcc2d25641fd93ef18b828036817 rdf:first sg:person.0751230340.29
113 rdf:rest N0d7290b576134c50b72e4ca3a1a6cbe4
114 Naddaa2bcf6724901926bc074d4bcaae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Creatine
116 rdf:type schema:DefinedTerm
117 Nb1c6db17bd0d44148a7fefb627810dfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Middle Aged
119 rdf:type schema:DefinedTerm
120 Nb51b6040c2c94ab1bc2fa1823c4e9da6 rdf:first sg:person.0644467013.11
121 rdf:rest N7619ffce917d4ebdbf177fee018c615b
122 Nb55da22381274b649f4117fe4f20c28d schema:volumeNumber 91
123 rdf:type schema:PublicationVolume
124 Nbabf5a18a96742e384f82a2085d5ca55 schema:name doi
125 schema:value 10.1007/s11060-008-9698-y
126 rdf:type schema:PropertyValue
127 Nc285311f8bf64d40b7219859ea5f7080 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Protons
129 rdf:type schema:DefinedTerm
130 Nd0d8e61f091142a4a908cd07389ba873 rdf:first sg:person.01033010241.51
131 rdf:rest Nf7dfb13cfaf042f88db56e93475f63a9
132 Nd24a4779df0d42f599c0db99c0276ae7 rdf:first sg:person.0617041674.73
133 rdf:rest Nd0d8e61f091142a4a908cd07389ba873
134 Nd5a57fb450904c1baf6e418c330ded65 rdf:first sg:person.01360711753.95
135 rdf:rest Na3c6a02ccc764e8184125fe8ee9a8989
136 Ndb9d62f5cf9a4567bf88d91438648ed5 rdf:first sg:person.01172466117.46
137 rdf:rest Nd24a4779df0d42f599c0db99c0276ae7
138 Ne1e1fb2a114d4680a2469f3d91c83cc3 schema:name readcube_id
139 schema:value d421b98366124e2afcaff0d2ea4dd500548282b4693c5e0b0cb6062da9f114b0
140 rdf:type schema:PropertyValue
141 Nf502daa684cf4b22825f2d21edbef839 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Humans
143 rdf:type schema:DefinedTerm
144 Nf7dfb13cfaf042f88db56e93475f63a9 rdf:first sg:person.0670070730.36
145 rdf:rest N896db86f2cbd416d8a61eac059aa2d20
146 Nffa1e098749b4c4b9a2363733e955ce7 schema:name Springer Nature - SN SciGraph project
147 rdf:type schema:Organization
148 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
149 schema:name Medical and Health Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
152 schema:name Clinical Sciences
153 rdf:type schema:DefinedTerm
154 sg:journal.1094205 schema:issn 0167-594X
155 1573-7373
156 schema:name Journal of Neuro-Oncology
157 rdf:type schema:Periodical
158 sg:person.01033010241.51 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
159 schema:familyName Amano
160 schema:givenName Kosaku
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033010241.51
162 rdf:type schema:Person
163 sg:person.01172466117.46 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
164 schema:familyName Chernov
165 schema:givenName Mikhail F.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172466117.46
167 rdf:type schema:Person
168 sg:person.01360711753.95 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
169 schema:familyName Nakamura
170 schema:givenName Ryoichi
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360711753.95
172 rdf:type schema:Person
173 sg:person.01367567653.82 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
174 schema:familyName Muragaki
175 schema:givenName Yoshihiro
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367567653.82
177 rdf:type schema:Person
178 sg:person.01371312217.38 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
179 schema:familyName Takakura
180 schema:givenName Kintomo
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371312217.38
182 rdf:type schema:Person
183 sg:person.0617041674.73 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
184 schema:familyName Kawamata
185 schema:givenName Takakazu
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617041674.73
187 rdf:type schema:Person
188 sg:person.0644467013.11 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
189 schema:familyName Iseki
190 schema:givenName Hiroshi
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644467013.11
192 rdf:type schema:Person
193 sg:person.0670070730.36 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
194 schema:familyName Ono
195 schema:givenName Yuko
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670070730.36
197 rdf:type schema:Person
198 sg:person.0673732030.56 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
199 schema:familyName Kubo
200 schema:givenName Osami
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673732030.56
202 rdf:type schema:Person
203 sg:person.0736131364.05 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
204 schema:familyName Suzuki
205 schema:givenName Takashi
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736131364.05
207 rdf:type schema:Person
208 sg:person.0751230340.29 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
209 schema:familyName Hori
210 schema:givenName Tomokatsu
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751230340.29
212 rdf:type schema:Person
213 sg:pub.10.1007/bf00873976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018811705
214 https://doi.org/10.1007/bf00873976
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s00234-001-0760-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013917389
217 https://doi.org/10.1007/s00234-001-0760-0
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s00330-006-0546-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014708266
220 https://doi.org/10.1007/s00330-006-0546-1
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00701-007-1234-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009804861
223 https://doi.org/10.1007/s00701-007-1234-x
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s10147-006-0589-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052645429
226 https://doi.org/10.1007/s10147-006-0589-y
227 rdf:type schema:CreativeWork
228 https://app.dimensions.ai/details/publication/pub.1077512675 schema:CreativeWork
229 https://doi.org/10.1016/j.clineuro.2006.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005676642
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1053/j.seminoncol.2004.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014457403
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1177/153303460200100103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006409296
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1177/197140090802100308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000149739
236 rdf:type schema:CreativeWork
237 https://doi.org/10.2152/jmi.53.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043336538
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3171/jns.2006.105.1.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071102006
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.410818.4 schema:alternateName Tokyo Women's Medical University
242 schema:name Department of Neuroradiology, Neurological Institute, Tokyo Women’s Medical University, Tokyo, Japan
243 Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
244 Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
245 International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...