Possible role of single-voxel 1H-MRS in differential diagnosis of suprasellar tumors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-01

AUTHORS

Mikhail F. Chernov, Takakazu Kawamata, Kosaku Amano, Yuko Ono, Takashi Suzuki, Ryoichi Nakamura, Yoshihiro Muragaki, Hiroshi Iseki, Osami Kubo, Tomokatsu Hori, Kintomo Takakura

ABSTRACT

The objective of the present study was investigation of the possible role of proton magnetic resonance spectroscopy ((1)H-MRS) for differential diagnosis of suprasellar tumors. Forty patients (23 men and 17 women; median age, 45 years) with suprasellar, hypothalamic, and third ventricle neoplasms underwent long-echo (TR: 2000 ms, TE: 136 ms, 128-256 acquisitions) single-voxel (1)H-MRS before surgical treatment. The volume of the voxel was either 3.4 cc or 8 cc. Spectroscopic data were analyzed by calculation of the various metabolite ratios as well as by determination of the type of the pathological (1)H-MR spectra. There were 19 pituitary adenomas, 7 gliomas, 5 craniopharyngiomas, 3 chordomas, meningioma, hemangiopericytoma, malignant lymphoma, germinoma, Rathke cleft cyst, and hypothalamic hamartoma (one of each). Six tumors were recurrent after initial surgical resection with or without irradiation. Comparison of the individual metabolite ratios revealed only few subtle differences among neoplasms. In the same time, pattern analysis with determination of the type of the pathological (1)H-MR spectra disclosed certain specific characteristics, which seemingly can be used for tumor typing. Meanwhile, metabolic imaging was less effective for characterization of recurrent neoplasms. In conclusion, in cases of initially diagnosed suprasellar tumors with involvement of the hypothalamus and extension into the third ventricle pattern analysis of the single-voxel (1)H-MRS can provide valuable information, which, in addition to structural MRI, can be effectively used for diagnostic purposes. More... »

PAGES

191-198

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y

DOI

http://dx.doi.org/10.1007/s11060-008-9698-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044534109

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18825316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aspartic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Astrocytoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Choline", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Craniopharyngioma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Creatine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pituitary Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Supratentorial Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernov", 
        "givenName": "Mikhail F.", 
        "id": "sg:person.01172466117.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172466117.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawamata", 
        "givenName": "Takakazu", 
        "id": "sg:person.0617041674.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617041674.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amano", 
        "givenName": "Kosaku", 
        "id": "sg:person.01033010241.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033010241.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neuroradiology, Neurological Institute, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ono", 
        "givenName": "Yuko", 
        "id": "sg:person.0670070730.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670070730.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Takashi", 
        "id": "sg:person.0736131364.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736131364.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Ryoichi", 
        "id": "sg:person.01360711753.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360711753.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muragaki", 
        "givenName": "Yoshihiro", 
        "id": "sg:person.01367567653.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367567653.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iseki", 
        "givenName": "Hiroshi", 
        "id": "sg:person.0644467013.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644467013.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubo", 
        "givenName": "Osami", 
        "id": "sg:person.0673732030.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673732030.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hori", 
        "givenName": "Tomokatsu", 
        "id": "sg:person.0751230340.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751230340.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takakura", 
        "givenName": "Kintomo", 
        "id": "sg:person.01371312217.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371312217.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1177/197140090802100308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000149739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/197140090802100308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000149739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clineuro.2006.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005676642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/153303460200100103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006409296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/153303460200100103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006409296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00701-007-1234-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009804861", 
          "https://doi.org/10.1007/s00701-007-1234-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00701-007-1234-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009804861", 
          "https://doi.org/10.1007/s00701-007-1234-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-001-0760-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013917389", 
          "https://doi.org/10.1007/s00234-001-0760-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.seminoncol.2004.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014457403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0546-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014708266", 
          "https://doi.org/10.1007/s00330-006-0546-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0546-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014708266", 
          "https://doi.org/10.1007/s00330-006-0546-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00873976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018811705", 
          "https://doi.org/10.1007/bf00873976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2152/jmi.53.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043336538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-006-0589-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645429", 
          "https://doi.org/10.1007/s10147-006-0589-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-006-0589-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645429", 
          "https://doi.org/10.1007/s10147-006-0589-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077512675", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-01", 
    "datePublishedReg": "2009-01-01", 
    "description": "The objective of the present study was investigation of the possible role of proton magnetic resonance spectroscopy ((1)H-MRS) for differential diagnosis of suprasellar tumors. Forty patients (23 men and 17 women; median age, 45 years) with suprasellar, hypothalamic, and third ventricle neoplasms underwent long-echo (TR: 2000 ms, TE: 136 ms, 128-256 acquisitions) single-voxel (1)H-MRS before surgical treatment. The volume of the voxel was either 3.4 cc or 8 cc. Spectroscopic data were analyzed by calculation of the various metabolite ratios as well as by determination of the type of the pathological (1)H-MR spectra. There were 19 pituitary adenomas, 7 gliomas, 5 craniopharyngiomas, 3 chordomas, meningioma, hemangiopericytoma, malignant lymphoma, germinoma, Rathke cleft cyst, and hypothalamic hamartoma (one of each). Six tumors were recurrent after initial surgical resection with or without irradiation. Comparison of the individual metabolite ratios revealed only few subtle differences among neoplasms. In the same time, pattern analysis with determination of the type of the pathological (1)H-MR spectra disclosed certain specific characteristics, which seemingly can be used for tumor typing. Meanwhile, metabolic imaging was less effective for characterization of recurrent neoplasms. In conclusion, in cases of initially diagnosed suprasellar tumors with involvement of the hypothalamus and extension into the third ventricle pattern analysis of the single-voxel (1)H-MRS can provide valuable information, which, in addition to structural MRI, can be effectively used for diagnostic purposes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11060-008-9698-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094205", 
        "issn": [
          "0167-594X", 
          "1573-7373"
        ], 
        "name": "Journal of Neuro-Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "Possible role of single-voxel 1H-MRS in differential diagnosis of suprasellar tumors", 
    "pagination": "191-198", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d421b98366124e2afcaff0d2ea4dd500548282b4693c5e0b0cb6062da9f114b0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18825316"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8309335"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11060-008-9698-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044534109"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11060-008-9698-y", 
      "https://app.dimensions.ai/details/publication/pub.1044534109"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000534.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11060-008-9698-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      57 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11060-008-9698-y schema:about N3125d4b6e2b5405b8a22a1faeaf611b6
2 N55a6b3b96f24467bb438d8b1a83a649c
3 N56ab2db9325f4a13b3f3e22a39cf6b24
4 N5798cebc399f4bf0a0a52f372e4f8ba7
5 N595d9aeaf9024383a7062b9bdac02a92
6 N61f7844edc81471aa5051ee98d70bf38
7 N689252942cb14f43be620df2f86d47f5
8 N69170c3b1a44483298d3c114c9ef5099
9 N7d25028e3c0d4d0190c2e34c954deafd
10 N90bd3eeea20c46c7a5d7e1a3d6c827f6
11 Nb4304110a68a482c92eea6095fdd3857
12 Nb50803b044f64aecb6196937d144d329
13 Nd7710d940bad491fa81a0e0186996499
14 Nea85bcd57c8849598420b9177572cef7
15 Nf823d60588f74506a3b97a37f2a9a1d1
16 Nfe36cb0a9a7142e3bcc8fad3fb8737fc
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author N6b657639d0f2414aa18c0b0f38187754
20 schema:citation sg:pub.10.1007/bf00873976
21 sg:pub.10.1007/s00234-001-0760-0
22 sg:pub.10.1007/s00330-006-0546-1
23 sg:pub.10.1007/s00701-007-1234-x
24 sg:pub.10.1007/s10147-006-0589-y
25 https://app.dimensions.ai/details/publication/pub.1077512675
26 https://doi.org/10.1016/j.clineuro.2006.11.001
27 https://doi.org/10.1053/j.seminoncol.2004.07.003
28 https://doi.org/10.1177/153303460200100103
29 https://doi.org/10.1177/197140090802100308
30 https://doi.org/10.2152/jmi.53.199
31 https://doi.org/10.3171/jns.2006.105.1.6
32 schema:datePublished 2009-01
33 schema:datePublishedReg 2009-01-01
34 schema:description The objective of the present study was investigation of the possible role of proton magnetic resonance spectroscopy ((1)H-MRS) for differential diagnosis of suprasellar tumors. Forty patients (23 men and 17 women; median age, 45 years) with suprasellar, hypothalamic, and third ventricle neoplasms underwent long-echo (TR: 2000 ms, TE: 136 ms, 128-256 acquisitions) single-voxel (1)H-MRS before surgical treatment. The volume of the voxel was either 3.4 cc or 8 cc. Spectroscopic data were analyzed by calculation of the various metabolite ratios as well as by determination of the type of the pathological (1)H-MR spectra. There were 19 pituitary adenomas, 7 gliomas, 5 craniopharyngiomas, 3 chordomas, meningioma, hemangiopericytoma, malignant lymphoma, germinoma, Rathke cleft cyst, and hypothalamic hamartoma (one of each). Six tumors were recurrent after initial surgical resection with or without irradiation. Comparison of the individual metabolite ratios revealed only few subtle differences among neoplasms. In the same time, pattern analysis with determination of the type of the pathological (1)H-MR spectra disclosed certain specific characteristics, which seemingly can be used for tumor typing. Meanwhile, metabolic imaging was less effective for characterization of recurrent neoplasms. In conclusion, in cases of initially diagnosed suprasellar tumors with involvement of the hypothalamus and extension into the third ventricle pattern analysis of the single-voxel (1)H-MRS can provide valuable information, which, in addition to structural MRI, can be effectively used for diagnostic purposes.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N5d85a04cf8604489bdf950c99958be21
39 Nfb26f6577bc54fd7ab8526ad6fccb3f8
40 sg:journal.1094205
41 schema:name Possible role of single-voxel 1H-MRS in differential diagnosis of suprasellar tumors
42 schema:pagination 191-198
43 schema:productId N2bf4237c7cf341c3bc3cb385cb685421
44 Nbb6a694e58094a5d8a500e1acfe28b42
45 Nc2c0e7206f6d4b8db88e09074b969058
46 Need4408ff3934cf5aac2609f11b391bf
47 Nf2cb8a5ae3df41efb204031455962d72
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044534109
49 https://doi.org/10.1007/s11060-008-9698-y
50 schema:sdDatePublished 2019-04-10T16:46
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nc2c33c2387824da8afcae2c0795c15c1
53 schema:url http://link.springer.com/10.1007%2Fs11060-008-9698-y
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1f04cb4032e14601bd7d0bb8f9d86c04 rdf:first sg:person.0617041674.73
58 rdf:rest N58b284e144804944ae82af5d3e7d6529
59 N26f542934ea74ec3a28d3092166cb57c rdf:first sg:person.01360711753.95
60 rdf:rest Necb28599ee3b49a3aa05dee84498b942
61 N2bf4237c7cf341c3bc3cb385cb685421 schema:name dimensions_id
62 schema:value pub.1044534109
63 rdf:type schema:PropertyValue
64 N3125d4b6e2b5405b8a22a1faeaf611b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Adult
66 rdf:type schema:DefinedTerm
67 N55a6b3b96f24467bb438d8b1a83a649c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Diagnosis, Differential
69 rdf:type schema:DefinedTerm
70 N56ab2db9325f4a13b3f3e22a39cf6b24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Creatine
72 rdf:type schema:DefinedTerm
73 N5798cebc399f4bf0a0a52f372e4f8ba7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Middle Aged
75 rdf:type schema:DefinedTerm
76 N58b284e144804944ae82af5d3e7d6529 rdf:first sg:person.01033010241.51
77 rdf:rest Nfd3a40cccd9a406ab6803f2f00b9b9ec
78 N595d9aeaf9024383a7062b9bdac02a92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Craniopharyngioma
80 rdf:type schema:DefinedTerm
81 N5d85a04cf8604489bdf950c99958be21 schema:volumeNumber 91
82 rdf:type schema:PublicationVolume
83 N61f7844edc81471aa5051ee98d70bf38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Humans
85 rdf:type schema:DefinedTerm
86 N663218683bbc485a9dbf9638b241f530 rdf:first sg:person.0673732030.56
87 rdf:rest Nd94197d28d0a4d2cb86414fac7993b37
88 N689252942cb14f43be620df2f86d47f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Male
90 rdf:type schema:DefinedTerm
91 N69170c3b1a44483298d3c114c9ef5099 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Astrocytoma
93 rdf:type schema:DefinedTerm
94 N6b657639d0f2414aa18c0b0f38187754 rdf:first sg:person.01172466117.46
95 rdf:rest N1f04cb4032e14601bd7d0bb8f9d86c04
96 N6cfd838d658843d7ac722323135d257a rdf:first sg:person.0644467013.11
97 rdf:rest N663218683bbc485a9dbf9638b241f530
98 N7d25028e3c0d4d0190c2e34c954deafd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Supratentorial Neoplasms
100 rdf:type schema:DefinedTerm
101 N90bd3eeea20c46c7a5d7e1a3d6c827f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Magnetic Resonance Spectroscopy
103 rdf:type schema:DefinedTerm
104 Naf03698879e7428f88be45642bdd28e0 rdf:first sg:person.0736131364.05
105 rdf:rest N26f542934ea74ec3a28d3092166cb57c
106 Nb4304110a68a482c92eea6095fdd3857 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Chi-Square Distribution
108 rdf:type schema:DefinedTerm
109 Nb50803b044f64aecb6196937d144d329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Aspartic Acid
111 rdf:type schema:DefinedTerm
112 Nbb6a694e58094a5d8a500e1acfe28b42 schema:name pubmed_id
113 schema:value 18825316
114 rdf:type schema:PropertyValue
115 Nc2c0e7206f6d4b8db88e09074b969058 schema:name readcube_id
116 schema:value d421b98366124e2afcaff0d2ea4dd500548282b4693c5e0b0cb6062da9f114b0
117 rdf:type schema:PropertyValue
118 Nc2c33c2387824da8afcae2c0795c15c1 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nd7710d940bad491fa81a0e0186996499 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Pituitary Neoplasms
122 rdf:type schema:DefinedTerm
123 Nd94197d28d0a4d2cb86414fac7993b37 rdf:first sg:person.0751230340.29
124 rdf:rest Ne078e4b6d2b84163a1e4e5ce92510bb4
125 Ne078e4b6d2b84163a1e4e5ce92510bb4 rdf:first sg:person.01371312217.38
126 rdf:rest rdf:nil
127 Nea85bcd57c8849598420b9177572cef7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Choline
129 rdf:type schema:DefinedTerm
130 Necb28599ee3b49a3aa05dee84498b942 rdf:first sg:person.01367567653.82
131 rdf:rest N6cfd838d658843d7ac722323135d257a
132 Need4408ff3934cf5aac2609f11b391bf schema:name nlm_unique_id
133 schema:value 8309335
134 rdf:type schema:PropertyValue
135 Nf2cb8a5ae3df41efb204031455962d72 schema:name doi
136 schema:value 10.1007/s11060-008-9698-y
137 rdf:type schema:PropertyValue
138 Nf823d60588f74506a3b97a37f2a9a1d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Female
140 rdf:type schema:DefinedTerm
141 Nfb26f6577bc54fd7ab8526ad6fccb3f8 schema:issueNumber 2
142 rdf:type schema:PublicationIssue
143 Nfd3a40cccd9a406ab6803f2f00b9b9ec rdf:first sg:person.0670070730.36
144 rdf:rest Naf03698879e7428f88be45642bdd28e0
145 Nfe36cb0a9a7142e3bcc8fad3fb8737fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Protons
147 rdf:type schema:DefinedTerm
148 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
149 schema:name Medical and Health Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
152 schema:name Clinical Sciences
153 rdf:type schema:DefinedTerm
154 sg:journal.1094205 schema:issn 0167-594X
155 1573-7373
156 schema:name Journal of Neuro-Oncology
157 rdf:type schema:Periodical
158 sg:person.01033010241.51 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
159 schema:familyName Amano
160 schema:givenName Kosaku
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033010241.51
162 rdf:type schema:Person
163 sg:person.01172466117.46 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
164 schema:familyName Chernov
165 schema:givenName Mikhail F.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172466117.46
167 rdf:type schema:Person
168 sg:person.01360711753.95 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
169 schema:familyName Nakamura
170 schema:givenName Ryoichi
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360711753.95
172 rdf:type schema:Person
173 sg:person.01367567653.82 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
174 schema:familyName Muragaki
175 schema:givenName Yoshihiro
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367567653.82
177 rdf:type schema:Person
178 sg:person.01371312217.38 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
179 schema:familyName Takakura
180 schema:givenName Kintomo
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371312217.38
182 rdf:type schema:Person
183 sg:person.0617041674.73 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
184 schema:familyName Kawamata
185 schema:givenName Takakazu
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617041674.73
187 rdf:type schema:Person
188 sg:person.0644467013.11 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
189 schema:familyName Iseki
190 schema:givenName Hiroshi
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644467013.11
192 rdf:type schema:Person
193 sg:person.0670070730.36 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
194 schema:familyName Ono
195 schema:givenName Yuko
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670070730.36
197 rdf:type schema:Person
198 sg:person.0673732030.56 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
199 schema:familyName Kubo
200 schema:givenName Osami
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673732030.56
202 rdf:type schema:Person
203 sg:person.0736131364.05 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
204 schema:familyName Suzuki
205 schema:givenName Takashi
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736131364.05
207 rdf:type schema:Person
208 sg:person.0751230340.29 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
209 schema:familyName Hori
210 schema:givenName Tomokatsu
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751230340.29
212 rdf:type schema:Person
213 sg:pub.10.1007/bf00873976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018811705
214 https://doi.org/10.1007/bf00873976
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s00234-001-0760-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013917389
217 https://doi.org/10.1007/s00234-001-0760-0
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s00330-006-0546-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014708266
220 https://doi.org/10.1007/s00330-006-0546-1
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00701-007-1234-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009804861
223 https://doi.org/10.1007/s00701-007-1234-x
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s10147-006-0589-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052645429
226 https://doi.org/10.1007/s10147-006-0589-y
227 rdf:type schema:CreativeWork
228 https://app.dimensions.ai/details/publication/pub.1077512675 schema:CreativeWork
229 https://doi.org/10.1016/j.clineuro.2006.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005676642
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1053/j.seminoncol.2004.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014457403
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1177/153303460200100103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006409296
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1177/197140090802100308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000149739
236 rdf:type schema:CreativeWork
237 https://doi.org/10.2152/jmi.53.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043336538
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3171/jns.2006.105.1.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071102006
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.410818.4 schema:alternateName Tokyo Women's Medical University
242 schema:name Department of Neuroradiology, Neurological Institute, Tokyo Women’s Medical University, Tokyo, Japan
243 Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
244 Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
245 International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...