Possible role of single-voxel 1H-MRS in differential diagnosis of suprasellar tumors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-01

AUTHORS

Mikhail F. Chernov, Takakazu Kawamata, Kosaku Amano, Yuko Ono, Takashi Suzuki, Ryoichi Nakamura, Yoshihiro Muragaki, Hiroshi Iseki, Osami Kubo, Tomokatsu Hori, Kintomo Takakura

ABSTRACT

The objective of the present study was investigation of the possible role of proton magnetic resonance spectroscopy ((1)H-MRS) for differential diagnosis of suprasellar tumors. Forty patients (23 men and 17 women; median age, 45 years) with suprasellar, hypothalamic, and third ventricle neoplasms underwent long-echo (TR: 2000 ms, TE: 136 ms, 128-256 acquisitions) single-voxel (1)H-MRS before surgical treatment. The volume of the voxel was either 3.4 cc or 8 cc. Spectroscopic data were analyzed by calculation of the various metabolite ratios as well as by determination of the type of the pathological (1)H-MR spectra. There were 19 pituitary adenomas, 7 gliomas, 5 craniopharyngiomas, 3 chordomas, meningioma, hemangiopericytoma, malignant lymphoma, germinoma, Rathke cleft cyst, and hypothalamic hamartoma (one of each). Six tumors were recurrent after initial surgical resection with or without irradiation. Comparison of the individual metabolite ratios revealed only few subtle differences among neoplasms. In the same time, pattern analysis with determination of the type of the pathological (1)H-MR spectra disclosed certain specific characteristics, which seemingly can be used for tumor typing. Meanwhile, metabolic imaging was less effective for characterization of recurrent neoplasms. In conclusion, in cases of initially diagnosed suprasellar tumors with involvement of the hypothalamus and extension into the third ventricle pattern analysis of the single-voxel (1)H-MRS can provide valuable information, which, in addition to structural MRI, can be effectively used for diagnostic purposes. More... »

PAGES

191-198

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y

DOI

http://dx.doi.org/10.1007/s11060-008-9698-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044534109

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/18825316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aspartic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Astrocytoma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chi-Square Distribution", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Choline", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Craniopharyngioma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Creatine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diagnosis, Differential", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Spectroscopy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pituitary Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Supratentorial Neoplasms", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chernov", 
        "givenName": "Mikhail F.", 
        "id": "sg:person.01172466117.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172466117.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawamata", 
        "givenName": "Takakazu", 
        "id": "sg:person.0617041674.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617041674.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amano", 
        "givenName": "Kosaku", 
        "id": "sg:person.01033010241.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033010241.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neuroradiology, Neurological Institute, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ono", 
        "givenName": "Yuko", 
        "id": "sg:person.0670070730.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670070730.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Takashi", 
        "id": "sg:person.0736131364.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736131364.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Ryoichi", 
        "id": "sg:person.01360711753.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360711753.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muragaki", 
        "givenName": "Yoshihiro", 
        "id": "sg:person.01367567653.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367567653.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iseki", 
        "givenName": "Hiroshi", 
        "id": "sg:person.0644467013.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644467013.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubo", 
        "givenName": "Osami", 
        "id": "sg:person.0673732030.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673732030.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hori", 
        "givenName": "Tomokatsu", 
        "id": "sg:person.0751230340.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751230340.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Women's Medical University", 
          "id": "https://www.grid.ac/institutes/grid.410818.4", 
          "name": [
            "International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women\u2019s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan", 
            "Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women\u2019s Medical University, Tokyo, Japan", 
            "Department of Neurosurgery, Tokyo Women\u2019s Medical University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takakura", 
        "givenName": "Kintomo", 
        "id": "sg:person.01371312217.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371312217.38"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1177/197140090802100308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000149739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/197140090802100308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000149739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clineuro.2006.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005676642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/153303460200100103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006409296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/153303460200100103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006409296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00701-007-1234-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009804861", 
          "https://doi.org/10.1007/s00701-007-1234-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00701-007-1234-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009804861", 
          "https://doi.org/10.1007/s00701-007-1234-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-001-0760-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013917389", 
          "https://doi.org/10.1007/s00234-001-0760-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.seminoncol.2004.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014457403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0546-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014708266", 
          "https://doi.org/10.1007/s00330-006-0546-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-006-0546-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014708266", 
          "https://doi.org/10.1007/s00330-006-0546-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00873976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018811705", 
          "https://doi.org/10.1007/bf00873976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2152/jmi.53.199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043336538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-006-0589-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645429", 
          "https://doi.org/10.1007/s10147-006-0589-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10147-006-0589-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645429", 
          "https://doi.org/10.1007/s10147-006-0589-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3171/jns.2006.105.1.6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071102006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077512675", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-01", 
    "datePublishedReg": "2009-01-01", 
    "description": "The objective of the present study was investigation of the possible role of proton magnetic resonance spectroscopy ((1)H-MRS) for differential diagnosis of suprasellar tumors. Forty patients (23 men and 17 women; median age, 45 years) with suprasellar, hypothalamic, and third ventricle neoplasms underwent long-echo (TR: 2000 ms, TE: 136 ms, 128-256 acquisitions) single-voxel (1)H-MRS before surgical treatment. The volume of the voxel was either 3.4 cc or 8 cc. Spectroscopic data were analyzed by calculation of the various metabolite ratios as well as by determination of the type of the pathological (1)H-MR spectra. There were 19 pituitary adenomas, 7 gliomas, 5 craniopharyngiomas, 3 chordomas, meningioma, hemangiopericytoma, malignant lymphoma, germinoma, Rathke cleft cyst, and hypothalamic hamartoma (one of each). Six tumors were recurrent after initial surgical resection with or without irradiation. Comparison of the individual metabolite ratios revealed only few subtle differences among neoplasms. In the same time, pattern analysis with determination of the type of the pathological (1)H-MR spectra disclosed certain specific characteristics, which seemingly can be used for tumor typing. Meanwhile, metabolic imaging was less effective for characterization of recurrent neoplasms. In conclusion, in cases of initially diagnosed suprasellar tumors with involvement of the hypothalamus and extension into the third ventricle pattern analysis of the single-voxel (1)H-MRS can provide valuable information, which, in addition to structural MRI, can be effectively used for diagnostic purposes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11060-008-9698-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094205", 
        "issn": [
          "0167-594X", 
          "1573-7373"
        ], 
        "name": "Journal of Neuro-Oncology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "91"
      }
    ], 
    "name": "Possible role of single-voxel 1H-MRS in differential diagnosis of suprasellar tumors", 
    "pagination": "191-198", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d421b98366124e2afcaff0d2ea4dd500548282b4693c5e0b0cb6062da9f114b0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "18825316"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8309335"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11060-008-9698-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044534109"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11060-008-9698-y", 
      "https://app.dimensions.ai/details/publication/pub.1044534109"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000534.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11060-008-9698-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11060-008-9698-y'


 

This table displays all metadata directly associated to this object as RDF triples.

246 TRIPLES      21 PREDICATES      57 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11060-008-9698-y schema:about N0bed74887db04b70b14b13230fd9b4b9
2 N1acfac76de63473182a54d2a1c104894
3 N1d8c6d69ccea4730848e03c61bc873f7
4 N5c4897c6f1274fb3b3584acfaed0a189
5 N6d7a2b5319804ad5b5324022e02f26a6
6 N7322491a302748dfb0964e18f7938ce6
7 N7bb7b57cedc348a19d91687dd05191ba
8 N80d56ef220ca475ebc7cc99d5ed0fdee
9 N9bfff41c8689473fa7fd103736a729ab
10 Nb8679c6573a3447db750c7c5c8dd61ae
11 Nc20bb6ca44d54514ad20e0a785c9cef9
12 Ndb18778105e44ac480c3ba853ae9468f
13 Ne85b450dde0a4e36863fdfb616c72278
14 Nf8dfd816fc69459da2bb5574ea06b9ac
15 Nfb92121cabca41678ea47fe0fef599f6
16 Nffd35cb396af4efd98465bf408415ef3
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author Nbd871a65eb904bdfae8a0f84838b2d05
20 schema:citation sg:pub.10.1007/bf00873976
21 sg:pub.10.1007/s00234-001-0760-0
22 sg:pub.10.1007/s00330-006-0546-1
23 sg:pub.10.1007/s00701-007-1234-x
24 sg:pub.10.1007/s10147-006-0589-y
25 https://app.dimensions.ai/details/publication/pub.1077512675
26 https://doi.org/10.1016/j.clineuro.2006.11.001
27 https://doi.org/10.1053/j.seminoncol.2004.07.003
28 https://doi.org/10.1177/153303460200100103
29 https://doi.org/10.1177/197140090802100308
30 https://doi.org/10.2152/jmi.53.199
31 https://doi.org/10.3171/jns.2006.105.1.6
32 schema:datePublished 2009-01
33 schema:datePublishedReg 2009-01-01
34 schema:description The objective of the present study was investigation of the possible role of proton magnetic resonance spectroscopy ((1)H-MRS) for differential diagnosis of suprasellar tumors. Forty patients (23 men and 17 women; median age, 45 years) with suprasellar, hypothalamic, and third ventricle neoplasms underwent long-echo (TR: 2000 ms, TE: 136 ms, 128-256 acquisitions) single-voxel (1)H-MRS before surgical treatment. The volume of the voxel was either 3.4 cc or 8 cc. Spectroscopic data were analyzed by calculation of the various metabolite ratios as well as by determination of the type of the pathological (1)H-MR spectra. There were 19 pituitary adenomas, 7 gliomas, 5 craniopharyngiomas, 3 chordomas, meningioma, hemangiopericytoma, malignant lymphoma, germinoma, Rathke cleft cyst, and hypothalamic hamartoma (one of each). Six tumors were recurrent after initial surgical resection with or without irradiation. Comparison of the individual metabolite ratios revealed only few subtle differences among neoplasms. In the same time, pattern analysis with determination of the type of the pathological (1)H-MR spectra disclosed certain specific characteristics, which seemingly can be used for tumor typing. Meanwhile, metabolic imaging was less effective for characterization of recurrent neoplasms. In conclusion, in cases of initially diagnosed suprasellar tumors with involvement of the hypothalamus and extension into the third ventricle pattern analysis of the single-voxel (1)H-MRS can provide valuable information, which, in addition to structural MRI, can be effectively used for diagnostic purposes.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Nc1a43267f8e2451cb32ed852df2886a1
39 Ne8086411742c41da812a357a430f8d0c
40 sg:journal.1094205
41 schema:name Possible role of single-voxel 1H-MRS in differential diagnosis of suprasellar tumors
42 schema:pagination 191-198
43 schema:productId N46ecaf70e8314d06aec37159faf71a1e
44 N49fad0762a9b47f6bd32a53c99cf301f
45 N8e73597607d94b1299493569912cd7cc
46 N9df59203967246ac9bc2fc42e3dda0d8
47 Nf73387fde05446f68f56b9b6983a8b70
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044534109
49 https://doi.org/10.1007/s11060-008-9698-y
50 schema:sdDatePublished 2019-04-10T16:46
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N6ef0d8b1d8a04e3aa5c02ef6b7ef0ea3
53 schema:url http://link.springer.com/10.1007%2Fs11060-008-9698-y
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N00ac9473a8c840aeaf4066d1dd34f1e9 rdf:first sg:person.0617041674.73
58 rdf:rest N86de13a971be44f8ac1092ca8780c788
59 N0bed74887db04b70b14b13230fd9b4b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Adult
61 rdf:type schema:DefinedTerm
62 N0e22a7ba73844421a7fb161c46780788 rdf:first sg:person.0670070730.36
63 rdf:rest N7805ebafbd5c4148b8c75330a57ee4b6
64 N1acfac76de63473182a54d2a1c104894 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Astrocytoma
66 rdf:type schema:DefinedTerm
67 N1d8c6d69ccea4730848e03c61bc873f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
68 schema:name Magnetic Resonance Spectroscopy
69 rdf:type schema:DefinedTerm
70 N35f645fd213d411b97b281ba830441d3 rdf:first sg:person.0751230340.29
71 rdf:rest Nfd7c59580672402291b823e20197e78f
72 N46ecaf70e8314d06aec37159faf71a1e schema:name dimensions_id
73 schema:value pub.1044534109
74 rdf:type schema:PropertyValue
75 N49fad0762a9b47f6bd32a53c99cf301f schema:name readcube_id
76 schema:value d421b98366124e2afcaff0d2ea4dd500548282b4693c5e0b0cb6062da9f114b0
77 rdf:type schema:PropertyValue
78 N5c4897c6f1274fb3b3584acfaed0a189 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Protons
80 rdf:type schema:DefinedTerm
81 N6d7a2b5319804ad5b5324022e02f26a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Creatine
83 rdf:type schema:DefinedTerm
84 N6ef0d8b1d8a04e3aa5c02ef6b7ef0ea3 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N7322491a302748dfb0964e18f7938ce6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Diagnosis, Differential
88 rdf:type schema:DefinedTerm
89 N7805ebafbd5c4148b8c75330a57ee4b6 rdf:first sg:person.0736131364.05
90 rdf:rest Nb5e6a8a0b3184ec4abebb1a88fb725ae
91 N7bb7b57cedc348a19d91687dd05191ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Choline
93 rdf:type schema:DefinedTerm
94 N80d56ef220ca475ebc7cc99d5ed0fdee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Middle Aged
96 rdf:type schema:DefinedTerm
97 N8641924030b04252847601f31fd0adce rdf:first sg:person.0673732030.56
98 rdf:rest N35f645fd213d411b97b281ba830441d3
99 N86de13a971be44f8ac1092ca8780c788 rdf:first sg:person.01033010241.51
100 rdf:rest N0e22a7ba73844421a7fb161c46780788
101 N8e73597607d94b1299493569912cd7cc schema:name nlm_unique_id
102 schema:value 8309335
103 rdf:type schema:PropertyValue
104 N9929b883f5004be6b4a3afb95bb83dfe rdf:first sg:person.01367567653.82
105 rdf:rest Na17403c71f3c4f53be4f15c8223a321a
106 N9bfff41c8689473fa7fd103736a729ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Aspartic Acid
108 rdf:type schema:DefinedTerm
109 N9df59203967246ac9bc2fc42e3dda0d8 schema:name doi
110 schema:value 10.1007/s11060-008-9698-y
111 rdf:type schema:PropertyValue
112 Na17403c71f3c4f53be4f15c8223a321a rdf:first sg:person.0644467013.11
113 rdf:rest N8641924030b04252847601f31fd0adce
114 Nb5e6a8a0b3184ec4abebb1a88fb725ae rdf:first sg:person.01360711753.95
115 rdf:rest N9929b883f5004be6b4a3afb95bb83dfe
116 Nb8679c6573a3447db750c7c5c8dd61ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Humans
118 rdf:type schema:DefinedTerm
119 Nbd871a65eb904bdfae8a0f84838b2d05 rdf:first sg:person.01172466117.46
120 rdf:rest N00ac9473a8c840aeaf4066d1dd34f1e9
121 Nc1a43267f8e2451cb32ed852df2886a1 schema:volumeNumber 91
122 rdf:type schema:PublicationVolume
123 Nc20bb6ca44d54514ad20e0a785c9cef9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Female
125 rdf:type schema:DefinedTerm
126 Ndb18778105e44ac480c3ba853ae9468f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Chi-Square Distribution
128 rdf:type schema:DefinedTerm
129 Ne8086411742c41da812a357a430f8d0c schema:issueNumber 2
130 rdf:type schema:PublicationIssue
131 Ne85b450dde0a4e36863fdfb616c72278 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Male
133 rdf:type schema:DefinedTerm
134 Nf73387fde05446f68f56b9b6983a8b70 schema:name pubmed_id
135 schema:value 18825316
136 rdf:type schema:PropertyValue
137 Nf8dfd816fc69459da2bb5574ea06b9ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Pituitary Neoplasms
139 rdf:type schema:DefinedTerm
140 Nfb92121cabca41678ea47fe0fef599f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Supratentorial Neoplasms
142 rdf:type schema:DefinedTerm
143 Nfd7c59580672402291b823e20197e78f rdf:first sg:person.01371312217.38
144 rdf:rest rdf:nil
145 Nffd35cb396af4efd98465bf408415ef3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Craniopharyngioma
147 rdf:type schema:DefinedTerm
148 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
149 schema:name Medical and Health Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
152 schema:name Clinical Sciences
153 rdf:type schema:DefinedTerm
154 sg:journal.1094205 schema:issn 0167-594X
155 1573-7373
156 schema:name Journal of Neuro-Oncology
157 rdf:type schema:Periodical
158 sg:person.01033010241.51 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
159 schema:familyName Amano
160 schema:givenName Kosaku
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033010241.51
162 rdf:type schema:Person
163 sg:person.01172466117.46 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
164 schema:familyName Chernov
165 schema:givenName Mikhail F.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172466117.46
167 rdf:type schema:Person
168 sg:person.01360711753.95 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
169 schema:familyName Nakamura
170 schema:givenName Ryoichi
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360711753.95
172 rdf:type schema:Person
173 sg:person.01367567653.82 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
174 schema:familyName Muragaki
175 schema:givenName Yoshihiro
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01367567653.82
177 rdf:type schema:Person
178 sg:person.01371312217.38 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
179 schema:familyName Takakura
180 schema:givenName Kintomo
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371312217.38
182 rdf:type schema:Person
183 sg:person.0617041674.73 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
184 schema:familyName Kawamata
185 schema:givenName Takakazu
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617041674.73
187 rdf:type schema:Person
188 sg:person.0644467013.11 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
189 schema:familyName Iseki
190 schema:givenName Hiroshi
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644467013.11
192 rdf:type schema:Person
193 sg:person.0670070730.36 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
194 schema:familyName Ono
195 schema:givenName Yuko
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670070730.36
197 rdf:type schema:Person
198 sg:person.0673732030.56 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
199 schema:familyName Kubo
200 schema:givenName Osami
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673732030.56
202 rdf:type schema:Person
203 sg:person.0736131364.05 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
204 schema:familyName Suzuki
205 schema:givenName Takashi
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736131364.05
207 rdf:type schema:Person
208 sg:person.0751230340.29 schema:affiliation https://www.grid.ac/institutes/grid.410818.4
209 schema:familyName Hori
210 schema:givenName Tomokatsu
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751230340.29
212 rdf:type schema:Person
213 sg:pub.10.1007/bf00873976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018811705
214 https://doi.org/10.1007/bf00873976
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s00234-001-0760-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013917389
217 https://doi.org/10.1007/s00234-001-0760-0
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s00330-006-0546-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014708266
220 https://doi.org/10.1007/s00330-006-0546-1
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00701-007-1234-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009804861
223 https://doi.org/10.1007/s00701-007-1234-x
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s10147-006-0589-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052645429
226 https://doi.org/10.1007/s10147-006-0589-y
227 rdf:type schema:CreativeWork
228 https://app.dimensions.ai/details/publication/pub.1077512675 schema:CreativeWork
229 https://doi.org/10.1016/j.clineuro.2006.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005676642
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1053/j.seminoncol.2004.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014457403
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1177/153303460200100103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006409296
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1177/197140090802100308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000149739
236 rdf:type schema:CreativeWork
237 https://doi.org/10.2152/jmi.53.199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043336538
238 rdf:type schema:CreativeWork
239 https://doi.org/10.3171/jns.2006.105.1.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071102006
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.410818.4 schema:alternateName Tokyo Women's Medical University
242 schema:name Department of Neuroradiology, Neurological Institute, Tokyo Women’s Medical University, Tokyo, Japan
243 Department of Neurosurgery, Tokyo Women’s Medical University, Tokyo, Japan
244 Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
245 International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women’s Medical University, 8-1 Kawada-cho, Shinjuku-ku, 162-8666, Tokyo, Japan
246 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...