Prediction of post-thinning stem volume in slash pine stands by means of state and transition models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10-16

AUTHORS

Santiago Fiandino, Jose Plevich, Juan Tarico, Marco Utello, Javier Gyenge

ABSTRACT

Predicting growth and production is the key to effective forest management, especially in those stands where silvicultural treatments are more intensive, such as silvopastoral systems. The aim of this study was to fit a state and transition model (STM) to predict the stem volume of slash pine silvopastoral systems under different management strategies. Volume growth was modeled by using the dominant height and the Relative Density Index, which can be related to other density indices (such as the Height Factor) through a proportionality factor. This link between density indices is what makes it possible to develop the transition functions, which are used to predict post-thinning stem volume. The transitional functions were established through three different approaches. Although all of them are good predictors of the Relative Density Index pattern, the best results in volume prediction were obtained when fitting the Weibull model to predict the Relative Density Index as a response of the Height Factor. By using this transition function, the differences in the mean volume between the predicted and observed data were less than 7% for all cases. We conclude that the proposed models are valuable management tools to predict the stem volume accumulated in the post-thinning period, and therefore, this finding may improve the management planning of the plantations of the region. More... »

PAGES

1-14

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11056-018-9688-7

DOI

http://dx.doi.org/10.1007/s11056-018-9688-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107661094


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Scientific and Technical Research Council", 
          "id": "https://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "Department of Plant Production, National University of R\u00edo Cuarto, X5804BYA, R\u00edo Cuarto, C\u00f3rdoba, Argentina", 
            "CONICET, Godoy Cruz 2290, C142FQB, CABA, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fiandino", 
        "givenName": "Santiago", 
        "id": "sg:person.014517633732.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014517633732.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of R\u00edo Cuarto", 
          "id": "https://www.grid.ac/institutes/grid.412226.1", 
          "name": [
            "Department of Plant Production, National University of R\u00edo Cuarto, X5804BYA, R\u00edo Cuarto, C\u00f3rdoba, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Plevich", 
        "givenName": "Jose", 
        "id": "sg:person.011446557237.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011446557237.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of R\u00edo Cuarto", 
          "id": "https://www.grid.ac/institutes/grid.412226.1", 
          "name": [
            "Department of Plant Production, National University of R\u00edo Cuarto, X5804BYA, R\u00edo Cuarto, C\u00f3rdoba, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarico", 
        "givenName": "Juan", 
        "id": "sg:person.015073622654.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015073622654.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of R\u00edo Cuarto", 
          "id": "https://www.grid.ac/institutes/grid.412226.1", 
          "name": [
            "Department of Plant Production, National University of R\u00edo Cuarto, X5804BYA, R\u00edo Cuarto, C\u00f3rdoba, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Utello", 
        "givenName": "Marco", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Scientific and Technical Research Council", 
          "id": "https://www.grid.ac/institutes/grid.423606.5", 
          "name": [
            "CONICET, Godoy Cruz 2290, C142FQB, CABA, Argentina", 
            "AER Tandil, INTA EEA Balcarce, 7000, Buenos Aires, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gyenge", 
        "givenName": "Javier", 
        "id": "sg:person.010032252407.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010032252407.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0378-1127(98)00449-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005867732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x94-244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016277119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11056-010-9208-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017748383", 
          "https://doi.org/10.1007/s11056-010-9208-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11056-010-9208-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017748383", 
          "https://doi.org/10.1007/s11056-010-9208-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11056-008-9107-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022075687", 
          "https://doi.org/10.1007/s11056-008-9107-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/forestry/77.4.349", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025791755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10342-005-0070-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027741235", 
          "https://doi.org/10.1007/s10342-005-0070-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10342-005-0070-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027741235", 
          "https://doi.org/10.1007/s10342-005-0070-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2504(08)60171-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033020655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2004.07.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036397108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11056-015-9518-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037402335", 
          "https://doi.org/10.1007/s11056-015-9518-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2010.07.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040790330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10457-009-9240-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043453958", 
          "https://doi.org/10.1007/s10457-009-9240-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10457-009-9240-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043453958", 
          "https://doi.org/10.1007/s10457-009-9240-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10457-009-9240-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043453958", 
          "https://doi.org/10.1007/s10457-009-9240-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(93)90105-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048448413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(93)90105-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048448413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/forest:2007013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056969859", 
          "https://doi.org/10.1051/forest:2007013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1051/forest:2008009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056969948", 
          "https://doi.org/10.1051/forest:2008009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5424/srf/2005142-00888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072842417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11056-017-9598-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086128206", 
          "https://doi.org/10.1007/s11056-017-9598-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11056-017-9598-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086128206", 
          "https://doi.org/10.1007/s11056-017-9598-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3926/oms.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087070639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3926/oms.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087070639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/avsc.12385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104267108"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-16", 
    "datePublishedReg": "2018-10-16", 
    "description": "Predicting growth and production is the key to effective forest management, especially in those stands where silvicultural treatments are more intensive, such as silvopastoral systems. The aim of this study was to fit a state and transition model (STM) to predict the stem volume of slash pine silvopastoral systems under different management strategies. Volume growth was modeled by using the dominant height and the Relative Density Index, which can be related to other density indices (such as the Height Factor) through a proportionality factor. This link between density indices is what makes it possible to develop the transition functions, which are used to predict post-thinning stem volume. The transitional functions were established through three different approaches. Although all of them are good predictors of the Relative Density Index pattern, the best results in volume prediction were obtained when fitting the Weibull model to predict the Relative Density Index as a response of the Height Factor. By using this transition function, the differences in the mean volume between the predicted and observed data were less than 7% for all cases. We conclude that the proposed models are valuable management tools to predict the stem volume accumulated in the post-thinning period, and therefore, this finding may improve the management planning of the plantations of the region.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11056-018-9688-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135892", 
        "issn": [
          "0169-4286", 
          "1573-5095"
        ], 
        "name": "New Forests", 
        "type": "Periodical"
      }
    ], 
    "name": "Prediction of post-thinning stem volume in slash pine stands by means of state and transition models", 
    "pagination": "1-14", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1b77ec31922798b8104bc8a5d159c0304431438c0bd199f75511225eb1514161"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11056-018-9688-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107661094"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11056-018-9688-7", 
      "https://app.dimensions.ai/details/publication/pub.1107661094"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000563.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11056-018-9688-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11056-018-9688-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11056-018-9688-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11056-018-9688-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11056-018-9688-7'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      42 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11056-018-9688-7 schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author N4ec1192c90ad40a5a586f82c35403c90
4 schema:citation sg:pub.10.1007/s10342-005-0070-x
5 sg:pub.10.1007/s10457-009-9240-z
6 sg:pub.10.1007/s11056-008-9107-6
7 sg:pub.10.1007/s11056-010-9208-x
8 sg:pub.10.1007/s11056-015-9518-0
9 sg:pub.10.1007/s11056-017-9598-0
10 sg:pub.10.1051/forest:2007013
11 sg:pub.10.1051/forest:2008009
12 https://doi.org/10.1016/0304-3800(93)90105-2
13 https://doi.org/10.1016/j.foreco.2004.07.017
14 https://doi.org/10.1016/j.foreco.2010.07.040
15 https://doi.org/10.1016/s0065-2504(08)60171-3
16 https://doi.org/10.1016/s0378-1127(98)00449-6
17 https://doi.org/10.1093/forestry/77.4.349
18 https://doi.org/10.1111/avsc.12385
19 https://doi.org/10.1139/x94-244
20 https://doi.org/10.3926/oms.127
21 https://doi.org/10.5424/srf/2005142-00888
22 schema:datePublished 2018-10-16
23 schema:datePublishedReg 2018-10-16
24 schema:description Predicting growth and production is the key to effective forest management, especially in those stands where silvicultural treatments are more intensive, such as silvopastoral systems. The aim of this study was to fit a state and transition model (STM) to predict the stem volume of slash pine silvopastoral systems under different management strategies. Volume growth was modeled by using the dominant height and the Relative Density Index, which can be related to other density indices (such as the Height Factor) through a proportionality factor. This link between density indices is what makes it possible to develop the transition functions, which are used to predict post-thinning stem volume. The transitional functions were established through three different approaches. Although all of them are good predictors of the Relative Density Index pattern, the best results in volume prediction were obtained when fitting the Weibull model to predict the Relative Density Index as a response of the Height Factor. By using this transition function, the differences in the mean volume between the predicted and observed data were less than 7% for all cases. We conclude that the proposed models are valuable management tools to predict the stem volume accumulated in the post-thinning period, and therefore, this finding may improve the management planning of the plantations of the region.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf sg:journal.1135892
29 schema:name Prediction of post-thinning stem volume in slash pine stands by means of state and transition models
30 schema:pagination 1-14
31 schema:productId N39bd2d8c47e7493983f72f71cfc5c276
32 N4d2ea5def6d04f488596896181d62460
33 N870e4d68318646279bc8b1146e8b384b
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107661094
35 https://doi.org/10.1007/s11056-018-9688-7
36 schema:sdDatePublished 2019-04-11T01:16
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher Nc9929db6ec7d410da2e0a352b3a41982
39 schema:url https://link.springer.com/10.1007%2Fs11056-018-9688-7
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N39bd2d8c47e7493983f72f71cfc5c276 schema:name dimensions_id
44 schema:value pub.1107661094
45 rdf:type schema:PropertyValue
46 N4d2ea5def6d04f488596896181d62460 schema:name doi
47 schema:value 10.1007/s11056-018-9688-7
48 rdf:type schema:PropertyValue
49 N4ec1192c90ad40a5a586f82c35403c90 rdf:first sg:person.014517633732.56
50 rdf:rest Nbc5a34581ca34243bc9cbb87dfcb2a3c
51 N63d66f92df2e40739b6a8aa580676c26 rdf:first sg:person.015073622654.46
52 rdf:rest Nbeb490016c264710a0a30edc2b485b03
53 N64c72b4d7d664803896dbce90614b340 schema:affiliation https://www.grid.ac/institutes/grid.412226.1
54 schema:familyName Utello
55 schema:givenName Marco
56 rdf:type schema:Person
57 N678eb2ee483d427b85aae1cea26862d2 rdf:first sg:person.010032252407.91
58 rdf:rest rdf:nil
59 N870e4d68318646279bc8b1146e8b384b schema:name readcube_id
60 schema:value 1b77ec31922798b8104bc8a5d159c0304431438c0bd199f75511225eb1514161
61 rdf:type schema:PropertyValue
62 Nbc5a34581ca34243bc9cbb87dfcb2a3c rdf:first sg:person.011446557237.18
63 rdf:rest N63d66f92df2e40739b6a8aa580676c26
64 Nbeb490016c264710a0a30edc2b485b03 rdf:first N64c72b4d7d664803896dbce90614b340
65 rdf:rest N678eb2ee483d427b85aae1cea26862d2
66 Nc9929db6ec7d410da2e0a352b3a41982 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
69 schema:name Agricultural and Veterinary Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
72 schema:name Forestry Sciences
73 rdf:type schema:DefinedTerm
74 sg:journal.1135892 schema:issn 0169-4286
75 1573-5095
76 schema:name New Forests
77 rdf:type schema:Periodical
78 sg:person.010032252407.91 schema:affiliation https://www.grid.ac/institutes/grid.423606.5
79 schema:familyName Gyenge
80 schema:givenName Javier
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010032252407.91
82 rdf:type schema:Person
83 sg:person.011446557237.18 schema:affiliation https://www.grid.ac/institutes/grid.412226.1
84 schema:familyName Plevich
85 schema:givenName Jose
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011446557237.18
87 rdf:type schema:Person
88 sg:person.014517633732.56 schema:affiliation https://www.grid.ac/institutes/grid.423606.5
89 schema:familyName Fiandino
90 schema:givenName Santiago
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014517633732.56
92 rdf:type schema:Person
93 sg:person.015073622654.46 schema:affiliation https://www.grid.ac/institutes/grid.412226.1
94 schema:familyName Tarico
95 schema:givenName Juan
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015073622654.46
97 rdf:type schema:Person
98 sg:pub.10.1007/s10342-005-0070-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027741235
99 https://doi.org/10.1007/s10342-005-0070-x
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s10457-009-9240-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043453958
102 https://doi.org/10.1007/s10457-009-9240-z
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11056-008-9107-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022075687
105 https://doi.org/10.1007/s11056-008-9107-6
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11056-010-9208-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017748383
108 https://doi.org/10.1007/s11056-010-9208-x
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11056-015-9518-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037402335
111 https://doi.org/10.1007/s11056-015-9518-0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11056-017-9598-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086128206
114 https://doi.org/10.1007/s11056-017-9598-0
115 rdf:type schema:CreativeWork
116 sg:pub.10.1051/forest:2007013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056969859
117 https://doi.org/10.1051/forest:2007013
118 rdf:type schema:CreativeWork
119 sg:pub.10.1051/forest:2008009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056969948
120 https://doi.org/10.1051/forest:2008009
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0304-3800(93)90105-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048448413
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.foreco.2004.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036397108
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.foreco.2010.07.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040790330
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0065-2504(08)60171-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033020655
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0378-1127(98)00449-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005867732
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1093/forestry/77.4.349 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025791755
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1111/avsc.12385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104267108
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1139/x94-244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016277119
137 rdf:type schema:CreativeWork
138 https://doi.org/10.3926/oms.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087070639
139 rdf:type schema:CreativeWork
140 https://doi.org/10.5424/srf/2005142-00888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072842417
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.412226.1 schema:alternateName National University of Río Cuarto
143 schema:name Department of Plant Production, National University of Río Cuarto, X5804BYA, Río Cuarto, Córdoba, Argentina
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.423606.5 schema:alternateName National Scientific and Technical Research Council
146 schema:name AER Tandil, INTA EEA Balcarce, 7000, Buenos Aires, Argentina
147 CONICET, Godoy Cruz 2290, C142FQB, CABA, Argentina
148 Department of Plant Production, National University of Río Cuarto, X5804BYA, Río Cuarto, Córdoba, Argentina
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...