A Novel Intelligent ELM-BBO Technique for Predicting Distance of Mine Blasting-Induced Flyrock View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-04-12

AUTHORS

Bhatawdekar Ramesh Murlidhar, Deepak Kumar, Danial Jahed Armaghani, Edy Tonnizam Mohamad, Bishwajit Roy, Binh Thai Pham

ABSTRACT

Blasting is an economical technique for rock breaking in hard rock excavation. One of its complex undesired environmental effects is flyrock, which may result in human injuries, fatalities and property damage. Because previously developed techniques for predicting flyrock are having less accuracy, this paper develops a new hybrid intelligent system of extreme learning machine (ELM) optimized by biogeography-based optimization (BBO) for prediction of flyrock distance resulting from blasting in a mine. In the BBO-ELM system, the role of BBO is to optimize the weights and biases of ELM. For comparison purposes, another hybrid model, i.e., particle swarm optimization (PSO)-ELM and a pre-developed ELM model were also applied and proposed. To do so, 262 datasets including burden to spacing ratio, hole diameter, powder factor, stemming, maximum charge per delay and hole depth as input variables and flyrock distance as system output were considered and used. Many models with different combinations of training and testing datasets have been constructed to identify the best predictive model in estimating flyrock. The results indicate capability of the newly developed BBO-ELM model for predicting flyrock distance. The coefficient of determination, coefficient of persistence and root mean square error values of (0.93, 0.93 and 21.51), (0.94, 0.95 and 18.84) and (0.79, 0.85 and 32.29) were obtained for testing datasets of PSO-ELM, BBO-ELM and ELM model, respectively, which reveal that the BBO-ELM is a powerful model for predicting flyrock induced by blasting. The developed BBO-ELM model can be introduced as a new, capable and applicable model for solving engineering problems. More... »

PAGES

4103-4120

References to SciGraph publications

  • 2016-06-17. Application of PSO to develop a powerful equation for prediction of flyrock due to blasting in NEURAL COMPUTING AND APPLICATIONS
  • 2018-11-07. Predicting Blast-Induced Air Overpressure: A Robust Artificial Intelligence System Based on Artificial Neural Networks and Random Forest in NATURAL RESOURCES RESEARCH
  • 2019-08-02. ORELM: A Novel Machine Learning Approach for Prediction of Flyrock in Mine Blasting in NATURAL RESOURCES RESEARCH
  • 2019-01-30. Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques in ENGINEERING WITH COMPUTERS
  • 2020-01-02. Random Forest and Bayesian Network Techniques for Probabilistic Prediction of Flyrock Induced by Blasting in Quarry Sites in NATURAL RESOURCES RESEARCH
  • 1998-12. Efficient Global Optimization of Expensive Black-Box Functions in JOURNAL OF GLOBAL OPTIMIZATION
  • 2019-05-16. A comparison of advanced computational models and experimental techniques in predicting blast-induced ground vibration in open-pit coal mine in ACTA GEOPHYSICA
  • 2010-05-21. Flyrock danger zone demarcation in opencast mines: a risk based approach in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2019-06-08. A Novel Artificial Intelligence Approach to Predict Blast-Induced Ground Vibration in Open-Pit Mines Based on the Firefly Algorithm and Artificial Neural Network in NATURAL RESOURCES RESEARCH
  • 2019-07-03. Deep neural network and whale optimization algorithm to assess flyrock induced by blasting in ENGINEERING WITH COMPUTERS
  • 2019-05-10. The effects of ABC, ICA, and PSO optimization techniques on prediction of ripping production in ENGINEERING WITH COMPUTERS
  • 2016-01-18. Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique in ENVIRONMENTAL EARTH SCIENCES
  • 2019-01-04. Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures in NEURAL COMPUTING AND APPLICATIONS
  • 2019-03-01. Prediction of Blast-Induced Ground Vibration in an Open-Pit Mine by a Novel Hybrid Model Based on Clustering and Artificial Neural Network in NATURAL RESOURCES RESEARCH
  • 1999-10. Studies on Flyrock at Limestone Quarries in ROCK MECHANICS AND ROCK ENGINEERING
  • 2016-05-25. Risk Assessment and Prediction of Flyrock Distance by Combined Multiple Regression Analysis and Monte Carlo Simulation of Quarry Blasting in ROCK MECHANICS AND ROCK ENGINEERING
  • 2019-12-21. Evaluation and Optimization of Prediction of Toe that Arises from Mine Blasting Operation Using Various Soft Computing Techniques in NATURAL RESOURCES RESEARCH
  • 2017-11-22. Developing a least squares support vector machine for estimating the blast-induced flyrock in ENGINEERING WITH COMPUTERS
  • 2016-12-24. Development of a precise model for prediction of blast-induced flyrock using regression tree technique in ENVIRONMENTAL EARTH SCIENCES
  • 2016-04-25. A new model based on gene expression programming to estimate air flow in a single rock joint in ENVIRONMENTAL EARTH SCIENCES
  • 2014-09-04. Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2016-12-24. A hybrid artificial bee colony algorithm-artificial neural network for forecasting the blast-produced ground vibration in ENGINEERING WITH COMPUTERS
  • 2016-06-30. Application of cuckoo search algorithm to estimate peak particle velocity in mine blasting in ENGINEERING WITH COMPUTERS
  • 2016-04-01. Development of a new model for predicting flyrock distance in quarry blasting: a genetic programming technique in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2015-03-28. Prediction of Blast-Induced Flyrock in Opencast Mines Using ANN and ANFIS in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2001-12. A Taxonomy of Global Optimization Methods Based on Response Surfaces in JOURNAL OF GLOBAL OPTIMIZATION
  • 2012-10-16. Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation in ARABIAN JOURNAL OF GEOSCIENCES
  • 2009-10-30. Prediction and controlling of flyrock in blasting operation using artificial neural network in ARABIAN JOURNAL OF GEOSCIENCES
  • 2015-04-25. Application of two intelligent systems in predicting environmental impacts of quarry blasting in ARABIAN JOURNAL OF GEOSCIENCES
  • 2020-01-20. A Fuzzy Rule-Based Approach to Address Uncertainty in Risk Assessment and Prediction of Blast-Induced Flyrock in a Quarry in NATURAL RESOURCES RESEARCH
  • 2016-04-11. Prediction of ground vibration due to quarry blasting based on gene expression programming: a new model for peak particle velocity prediction in INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY
  • 2019-12-10. Concrete compressive strength using artificial neural networks in NEURAL COMPUTING AND APPLICATIONS
  • 2015-09-12. Combination of neural network and ant colony optimization algorithms for prediction and optimization of flyrock and back-break induced by blasting in ENGINEERING WITH COMPUTERS
  • 2016-12-02. Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting in NEURAL COMPUTING AND APPLICATIONS
  • 2019-08-21. A new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets in ENGINEERING WITH COMPUTERS
  • 2018-03-03. Three hybrid intelligent models in estimating flyrock distance resulting from blasting in ENGINEERING WITH COMPUTERS
  • 2019-12-10. Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques in BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT
  • 2019-06-25. Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns in ENGINEERING WITH COMPUTERS
  • 2018-09-17. A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam in NEURAL COMPUTING AND APPLICATIONS
  • 2019-02-25. Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study in ACTA GEOPHYSICA
  • 2017-09-04. Applications of Particle Swarm Optimization in Geotechnical Engineering: A Comprehensive Review in GEOTECHNICAL AND GEOLOGICAL ENGINEERING
  • 2019-07-15. Use of Intelligent Methods to Design Effective Pattern Parameters of Mine Blasting to Minimize Flyrock Distance in NATURAL RESOURCES RESEARCH
  • 2013-11-27. Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization in ARABIAN JOURNAL OF GEOSCIENCES
  • 2019-03-08. A Monte Carlo simulation approach for effective assessment of flyrock based on intelligent system of neural network in ENGINEERING WITH COMPUTERS
  • 2019-07-03. Intelligent Prediction of Blasting-Induced Ground Vibration Using ANFIS Optimized by GA and PSO in NATURAL RESOURCES RESEARCH
  • 2016-07-22. A Kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points in JOURNAL OF GLOBAL OPTIMIZATION
  • 2014-04-03. An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels in COGNITIVE COMPUTATION
  • 2015-02-18. Prediction of seismic slope stability through combination of particle swarm optimization and neural network in ENGINEERING WITH COMPUTERS
  • 2015-03-20. Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods in ENGINEERING WITH COMPUTERS
  • 2011-05-26. Evaluation of flyrock phenomenon due to blasting operation by support vector machine in NEURAL COMPUTING AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11053-020-09676-6

    DOI

    http://dx.doi.org/10.1007/s11053-020-09676-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1126634256


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Science and Management", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Resources Engineering and Extractive Metallurgy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Geotropik - Centre of Tropical Geoengineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Geotropik - Centre of Tropical Geoengineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murlidhar", 
            "givenName": "Bhatawdekar Ramesh", 
            "id": "sg:person.016001401373.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016001401373.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, National Institute of Technology Patna, Ashok Raj Path, 800005, Patna, India", 
              "id": "http://www.grid.ac/institutes/grid.444650.7", 
              "name": [
                "Department of Civil Engineering, National Institute of Technology Patna, Ashok Raj Path, 800005, Patna, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kumar", 
            "givenName": "Deepak", 
            "id": "sg:person.012055724152.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012055724152.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam", 
              "id": "http://www.grid.ac/institutes/grid.444812.f", 
              "name": [
                "Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jahed Armaghani", 
            "givenName": "Danial", 
            "id": "sg:person.012214152011.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214152011.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Geotropik - Centre of Tropical Geoengineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia", 
              "id": "http://www.grid.ac/institutes/grid.410877.d", 
              "name": [
                "Geotropik - Centre of Tropical Geoengineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mohamad", 
            "givenName": "Edy Tonnizam", 
            "id": "sg:person.010264523752.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010264523752.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science and Engineering, National Institute of Technology Patna, Patna, India", 
              "id": "http://www.grid.ac/institutes/grid.444650.7", 
              "name": [
                "Department of Computer Science and Engineering, National Institute of Technology Patna, Patna, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roy", 
            "givenName": "Bishwajit", 
            "id": "sg:person.010264367327.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010264367327.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Research and Development, Duy Tan University, 550000, Da Nang, Vietnam", 
              "id": "http://www.grid.ac/institutes/grid.444918.4", 
              "name": [
                "Institute of Research and Development, Duy Tan University, 550000, Da Nang, Vietnam"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pham", 
            "givenName": "Binh Thai", 
            "id": "sg:person.016647207523.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647207523.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11053-018-9424-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109759308", 
              "https://doi.org/10.1007/s11053-018-9424-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11053-019-09611-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123791357", 
              "https://doi.org/10.1007/s11053-019-09611-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-014-0657-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016555821", 
              "https://doi.org/10.1007/s10064-014-0657-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-015-4983-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041196690", 
              "https://doi.org/10.1007/s12665-015-4983-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-013-1174-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038954491", 
              "https://doi.org/10.1007/s12517-013-1174-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-019-01626-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123268773", 
              "https://doi.org/10.1007/s10064-019-01626-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11053-019-09605-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123594088", 
              "https://doi.org/10.1007/s11053-019-09605-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-019-00726-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112634042", 
              "https://doi.org/10.1007/s00366-019-00726-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-015-9869-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008803471", 
              "https://doi.org/10.1007/s10706-015-9869-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-017-0568-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092907006", 
              "https://doi.org/10.1007/s00366-017-0568-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11053-020-09616-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1124194648", 
              "https://doi.org/10.1007/s11053-020-09616-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11053-019-09515-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117740481", 
              "https://doi.org/10.1007/s11053-019-09515-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0400-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003281017", 
              "https://doi.org/10.1007/s00366-015-0400-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-015-1908-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025927733", 
              "https://doi.org/10.1007/s12517-015-1908-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-019-04663-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1123266113", 
              "https://doi.org/10.1007/s00521-019-04663-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-018-3717-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107055053", 
              "https://doi.org/10.1007/s00521-018-3717-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12559-014-9255-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005939490", 
              "https://doi.org/10.1007/s12559-014-9255-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-019-00849-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120475015", 
              "https://doi.org/10.1007/s00366-019-00849-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-009-0091-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003408679", 
              "https://doi.org/10.1007/s12517-009-0091-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11600-019-00304-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114502390", 
              "https://doi.org/10.1007/s11600-019-00304-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-019-00816-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117731285", 
              "https://doi.org/10.1007/s00366-019-00816-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-010-0298-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010242509", 
              "https://doi.org/10.1007/s10064-010-0298-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-016-5524-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039856740", 
              "https://doi.org/10.1007/s12665-016-5524-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-019-00711-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111778658", 
              "https://doi.org/10.1007/s00366-019-00711-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-016-0497-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053003292", 
              "https://doi.org/10.1007/s00366-016-0497-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-018-0596-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101330868", 
              "https://doi.org/10.1007/s00366-018-0596-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1008306431147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009040383", 
              "https://doi.org/10.1023/a:1008306431147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10898-016-0455-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028035110", 
              "https://doi.org/10.1007/s10898-016-0455-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11053-019-09519-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1118016732", 
              "https://doi.org/10.1007/s11053-019-09519-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00603-016-1015-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033227644", 
              "https://doi.org/10.1007/s00603-016-1015-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11053-019-09532-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120092086", 
              "https://doi.org/10.1007/s11053-019-09532-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-019-00808-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117495481", 
              "https://doi.org/10.1007/s00366-019-00808-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2434-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009507452", 
              "https://doi.org/10.1007/s00521-016-2434-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13762-016-0979-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033172041", 
              "https://doi.org/10.1007/s13762-016-0979-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-016-0463-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027620432", 
              "https://doi.org/10.1007/s00366-016-0463-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012771025575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036497930", 
              "https://doi.org/10.1023/a:1012771025575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10706-017-0356-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091477574", 
              "https://doi.org/10.1007/s10706-017-0356-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11053-019-09470-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112475471", 
              "https://doi.org/10.1007/s11053-019-09470-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-018-03965-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1111154918", 
              "https://doi.org/10.1007/s00521-018-03965-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0402-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022416262", 
              "https://doi.org/10.1007/s00366-015-0402-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-015-0415-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006981814", 
              "https://doi.org/10.1007/s00366-015-0415-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12665-016-6335-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009284080", 
              "https://doi.org/10.1007/s12665-016-6335-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-011-0631-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039536792", 
              "https://doi.org/10.1007/s00521-011-0631-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00521-016-2746-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030713151", 
              "https://doi.org/10.1007/s00521-016-2746-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11053-019-09503-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1116997542", 
              "https://doi.org/10.1007/s11053-019-09503-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12517-012-0703-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032640964", 
              "https://doi.org/10.1007/s12517-012-0703-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00366-019-00770-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1114039927", 
              "https://doi.org/10.1007/s00366-019-00770-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11600-019-00268-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112378322", 
              "https://doi.org/10.1007/s11600-019-00268-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10064-016-0872-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006311390", 
              "https://doi.org/10.1007/s10064-016-0872-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s006030050049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044493601", 
              "https://doi.org/10.1007/s006030050049"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-04-12", 
        "datePublishedReg": "2020-04-12", 
        "description": "Blasting is an economical technique for rock breaking in hard rock excavation. One of its complex undesired environmental effects is flyrock, which may result in human injuries, fatalities and property damage. Because previously developed techniques for predicting flyrock are having less accuracy, this paper develops a new hybrid intelligent system of extreme learning machine (ELM) optimized by biogeography-based optimization (BBO) for prediction of flyrock distance resulting from blasting in a mine. In the BBO-ELM system, the role of BBO is to optimize the weights and biases of ELM. For comparison purposes, another hybrid model, i.e., particle swarm optimization (PSO)-ELM and a pre-developed ELM model were also applied and proposed. To do so, 262 datasets including burden to spacing ratio, hole diameter, powder factor, stemming, maximum charge per delay and hole depth as input variables and flyrock distance as system output were considered and used. Many models with different combinations of training and testing datasets have been constructed to identify the best predictive model in estimating flyrock. The results indicate capability of the newly developed BBO-ELM model for predicting flyrock distance. The coefficient of determination, coefficient of persistence and root mean square error values of (0.93, 0.93 and 21.51), (0.94, 0.95 and 18.84) and (0.79, 0.85 and 32.29) were obtained for testing datasets of PSO-ELM, BBO-ELM and ELM model, respectively, which reveal that the BBO-ELM is a powerful model for predicting flyrock induced by blasting. The developed BBO-ELM model can be introduced as a new, capable and applicable model for solving engineering problems.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11053-020-09676-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136218", 
            "issn": [
              "0961-1444", 
              "1520-7439"
            ], 
            "name": "Natural Resources Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "keywords": [
          "flyrock distance", 
          "hard rock excavation", 
          "extreme learning machine", 
          "ELM model", 
          "powder factor", 
          "rock excavation", 
          "mine blasting", 
          "biogeography-based optimization", 
          "flyrock", 
          "particle swarm optimization", 
          "hole diameter", 
          "root mean square error (RMSE) values", 
          "hole depth", 
          "maximum charge", 
          "engineering problems", 
          "undesired environmental effects", 
          "system output", 
          "economical technique", 
          "biases of ELM", 
          "blasting", 
          "square error values", 
          "PSO-ELM", 
          "mean square error values", 
          "swarm optimization", 
          "comparison purposes", 
          "hybrid intelligent system", 
          "input variables", 
          "error values", 
          "property damage", 
          "coefficient of determination", 
          "human injuries", 
          "hybrid model", 
          "learning machine", 
          "optimization", 
          "intelligent systems", 
          "testing dataset", 
          "coefficient", 
          "different combinations", 
          "less accuracy", 
          "environmental effects", 
          "technique", 
          "new hybrid intelligent system", 
          "model", 
          "predictive model", 
          "mine", 
          "system", 
          "applicable model", 
          "capability", 
          "diameter", 
          "distance", 
          "machine", 
          "excavation", 
          "coefficient of persistence", 
          "depth", 
          "accuracy", 
          "output", 
          "prediction", 
          "charge", 
          "ratio", 
          "rocks", 
          "results", 
          "problem", 
          "delay", 
          "damage", 
          "values", 
          "combination", 
          "determination", 
          "effect", 
          "best predictive model", 
          "dataset", 
          "purpose", 
          "variables", 
          "weight", 
          "biases", 
          "factors", 
          "fatalities", 
          "stemming", 
          "role", 
          "powerful model", 
          "burden", 
          "training", 
          "persistence", 
          "injury", 
          "paper"
        ], 
        "name": "A Novel Intelligent ELM-BBO Technique for Predicting Distance of Mine Blasting-Induced Flyrock", 
        "pagination": "4103-4120", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1126634256"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11053-020-09676-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11053-020-09676-6", 
          "https://app.dimensions.ai/details/publication/pub.1126634256"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:38", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_861.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11053-020-09676-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11053-020-09676-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11053-020-09676-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11053-020-09676-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11053-020-09676-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    396 TRIPLES      22 PREDICATES      161 URIs      101 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11053-020-09676-6 schema:about anzsrc-for:05
    2 anzsrc-for:0502
    3 anzsrc-for:09
    4 anzsrc-for:0914
    5 schema:author Ne91134ef0b164b9b9e96b4d0e3e079ea
    6 schema:citation sg:pub.10.1007/s00366-015-0400-7
    7 sg:pub.10.1007/s00366-015-0402-5
    8 sg:pub.10.1007/s00366-015-0415-0
    9 sg:pub.10.1007/s00366-016-0463-0
    10 sg:pub.10.1007/s00366-016-0497-3
    11 sg:pub.10.1007/s00366-017-0568-0
    12 sg:pub.10.1007/s00366-018-0596-4
    13 sg:pub.10.1007/s00366-019-00711-6
    14 sg:pub.10.1007/s00366-019-00726-z
    15 sg:pub.10.1007/s00366-019-00770-9
    16 sg:pub.10.1007/s00366-019-00808-y
    17 sg:pub.10.1007/s00366-019-00816-y
    18 sg:pub.10.1007/s00366-019-00849-3
    19 sg:pub.10.1007/s00521-011-0631-5
    20 sg:pub.10.1007/s00521-016-2434-1
    21 sg:pub.10.1007/s00521-016-2746-1
    22 sg:pub.10.1007/s00521-018-03965-1
    23 sg:pub.10.1007/s00521-018-3717-5
    24 sg:pub.10.1007/s00521-019-04663-2
    25 sg:pub.10.1007/s00603-016-1015-z
    26 sg:pub.10.1007/s006030050049
    27 sg:pub.10.1007/s10064-010-0298-7
    28 sg:pub.10.1007/s10064-014-0657-x
    29 sg:pub.10.1007/s10064-016-0872-8
    30 sg:pub.10.1007/s10064-019-01626-8
    31 sg:pub.10.1007/s10706-015-9869-5
    32 sg:pub.10.1007/s10706-017-0356-z
    33 sg:pub.10.1007/s10898-016-0455-z
    34 sg:pub.10.1007/s11053-018-9424-1
    35 sg:pub.10.1007/s11053-019-09470-z
    36 sg:pub.10.1007/s11053-019-09503-7
    37 sg:pub.10.1007/s11053-019-09515-3
    38 sg:pub.10.1007/s11053-019-09519-z
    39 sg:pub.10.1007/s11053-019-09532-2
    40 sg:pub.10.1007/s11053-019-09605-2
    41 sg:pub.10.1007/s11053-019-09611-4
    42 sg:pub.10.1007/s11053-020-09616-4
    43 sg:pub.10.1007/s11600-019-00268-4
    44 sg:pub.10.1007/s11600-019-00304-3
    45 sg:pub.10.1007/s12517-009-0091-8
    46 sg:pub.10.1007/s12517-012-0703-6
    47 sg:pub.10.1007/s12517-013-1174-0
    48 sg:pub.10.1007/s12517-015-1908-2
    49 sg:pub.10.1007/s12559-014-9255-2
    50 sg:pub.10.1007/s12665-015-4983-5
    51 sg:pub.10.1007/s12665-016-5524-6
    52 sg:pub.10.1007/s12665-016-6335-5
    53 sg:pub.10.1007/s13762-016-0979-2
    54 sg:pub.10.1023/a:1008306431147
    55 sg:pub.10.1023/a:1012771025575
    56 schema:datePublished 2020-04-12
    57 schema:datePublishedReg 2020-04-12
    58 schema:description Blasting is an economical technique for rock breaking in hard rock excavation. One of its complex undesired environmental effects is flyrock, which may result in human injuries, fatalities and property damage. Because previously developed techniques for predicting flyrock are having less accuracy, this paper develops a new hybrid intelligent system of extreme learning machine (ELM) optimized by biogeography-based optimization (BBO) for prediction of flyrock distance resulting from blasting in a mine. In the BBO-ELM system, the role of BBO is to optimize the weights and biases of ELM. For comparison purposes, another hybrid model, i.e., particle swarm optimization (PSO)-ELM and a pre-developed ELM model were also applied and proposed. To do so, 262 datasets including burden to spacing ratio, hole diameter, powder factor, stemming, maximum charge per delay and hole depth as input variables and flyrock distance as system output were considered and used. Many models with different combinations of training and testing datasets have been constructed to identify the best predictive model in estimating flyrock. The results indicate capability of the newly developed BBO-ELM model for predicting flyrock distance. The coefficient of determination, coefficient of persistence and root mean square error values of (0.93, 0.93 and 21.51), (0.94, 0.95 and 18.84) and (0.79, 0.85 and 32.29) were obtained for testing datasets of PSO-ELM, BBO-ELM and ELM model, respectively, which reveal that the BBO-ELM is a powerful model for predicting flyrock induced by blasting. The developed BBO-ELM model can be introduced as a new, capable and applicable model for solving engineering problems.
    59 schema:genre article
    60 schema:inLanguage en
    61 schema:isAccessibleForFree false
    62 schema:isPartOf N62061ed777dc4078b6c96cb1268d19e9
    63 Nae4bc710fbcc4f409d51b39d21b97458
    64 sg:journal.1136218
    65 schema:keywords ELM model
    66 PSO-ELM
    67 accuracy
    68 applicable model
    69 best predictive model
    70 biases
    71 biases of ELM
    72 biogeography-based optimization
    73 blasting
    74 burden
    75 capability
    76 charge
    77 coefficient
    78 coefficient of determination
    79 coefficient of persistence
    80 combination
    81 comparison purposes
    82 damage
    83 dataset
    84 delay
    85 depth
    86 determination
    87 diameter
    88 different combinations
    89 distance
    90 economical technique
    91 effect
    92 engineering problems
    93 environmental effects
    94 error values
    95 excavation
    96 extreme learning machine
    97 factors
    98 fatalities
    99 flyrock
    100 flyrock distance
    101 hard rock excavation
    102 hole depth
    103 hole diameter
    104 human injuries
    105 hybrid intelligent system
    106 hybrid model
    107 injury
    108 input variables
    109 intelligent systems
    110 learning machine
    111 less accuracy
    112 machine
    113 maximum charge
    114 mean square error values
    115 mine
    116 mine blasting
    117 model
    118 new hybrid intelligent system
    119 optimization
    120 output
    121 paper
    122 particle swarm optimization
    123 persistence
    124 powder factor
    125 powerful model
    126 prediction
    127 predictive model
    128 problem
    129 property damage
    130 purpose
    131 ratio
    132 results
    133 rock excavation
    134 rocks
    135 role
    136 root mean square error (RMSE) values
    137 square error values
    138 stemming
    139 swarm optimization
    140 system
    141 system output
    142 technique
    143 testing dataset
    144 training
    145 undesired environmental effects
    146 values
    147 variables
    148 weight
    149 schema:name A Novel Intelligent ELM-BBO Technique for Predicting Distance of Mine Blasting-Induced Flyrock
    150 schema:pagination 4103-4120
    151 schema:productId N064861fa24584e21b28e89302fd623a5
    152 N84b5ee5dcfd44a8394356e13efabcdcd
    153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126634256
    154 https://doi.org/10.1007/s11053-020-09676-6
    155 schema:sdDatePublished 2022-05-20T07:38
    156 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    157 schema:sdPublisher N5d72f3ae240e45cfa971e33c5ced6141
    158 schema:url https://doi.org/10.1007/s11053-020-09676-6
    159 sgo:license sg:explorer/license/
    160 sgo:sdDataset articles
    161 rdf:type schema:ScholarlyArticle
    162 N064861fa24584e21b28e89302fd623a5 schema:name dimensions_id
    163 schema:value pub.1126634256
    164 rdf:type schema:PropertyValue
    165 N5d72f3ae240e45cfa971e33c5ced6141 schema:name Springer Nature - SN SciGraph project
    166 rdf:type schema:Organization
    167 N62061ed777dc4078b6c96cb1268d19e9 schema:issueNumber 6
    168 rdf:type schema:PublicationIssue
    169 N66f609483c404fd6a4682df8a3888880 rdf:first sg:person.010264523752.19
    170 rdf:rest Nfb16c0a8a17a4f28a5775247e7ccc405
    171 N84b5ee5dcfd44a8394356e13efabcdcd schema:name doi
    172 schema:value 10.1007/s11053-020-09676-6
    173 rdf:type schema:PropertyValue
    174 N8e1cc34cfc2e4c74b1ca95f62e2ec614 rdf:first sg:person.012214152011.74
    175 rdf:rest N66f609483c404fd6a4682df8a3888880
    176 N8f0ffc32504c4568963793913614ca5b rdf:first sg:person.012055724152.78
    177 rdf:rest N8e1cc34cfc2e4c74b1ca95f62e2ec614
    178 Nae4bc710fbcc4f409d51b39d21b97458 schema:volumeNumber 29
    179 rdf:type schema:PublicationVolume
    180 Nc05b135260c14fa7b9dea91afe2f780c rdf:first sg:person.016647207523.54
    181 rdf:rest rdf:nil
    182 Ne91134ef0b164b9b9e96b4d0e3e079ea rdf:first sg:person.016001401373.08
    183 rdf:rest N8f0ffc32504c4568963793913614ca5b
    184 Nfb16c0a8a17a4f28a5775247e7ccc405 rdf:first sg:person.010264367327.40
    185 rdf:rest Nc05b135260c14fa7b9dea91afe2f780c
    186 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Environmental Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Environmental Science and Management
    191 rdf:type schema:DefinedTerm
    192 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    193 schema:name Engineering
    194 rdf:type schema:DefinedTerm
    195 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
    196 schema:name Resources Engineering and Extractive Metallurgy
    197 rdf:type schema:DefinedTerm
    198 sg:journal.1136218 schema:issn 0961-1444
    199 1520-7439
    200 schema:name Natural Resources Research
    201 schema:publisher Springer Nature
    202 rdf:type schema:Periodical
    203 sg:person.010264367327.40 schema:affiliation grid-institutes:grid.444650.7
    204 schema:familyName Roy
    205 schema:givenName Bishwajit
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010264367327.40
    207 rdf:type schema:Person
    208 sg:person.010264523752.19 schema:affiliation grid-institutes:grid.410877.d
    209 schema:familyName Mohamad
    210 schema:givenName Edy Tonnizam
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010264523752.19
    212 rdf:type schema:Person
    213 sg:person.012055724152.78 schema:affiliation grid-institutes:grid.444650.7
    214 schema:familyName Kumar
    215 schema:givenName Deepak
    216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012055724152.78
    217 rdf:type schema:Person
    218 sg:person.012214152011.74 schema:affiliation grid-institutes:grid.444812.f
    219 schema:familyName Jahed Armaghani
    220 schema:givenName Danial
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012214152011.74
    222 rdf:type schema:Person
    223 sg:person.016001401373.08 schema:affiliation grid-institutes:grid.410877.d
    224 schema:familyName Murlidhar
    225 schema:givenName Bhatawdekar Ramesh
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016001401373.08
    227 rdf:type schema:Person
    228 sg:person.016647207523.54 schema:affiliation grid-institutes:grid.444918.4
    229 schema:familyName Pham
    230 schema:givenName Binh Thai
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647207523.54
    232 rdf:type schema:Person
    233 sg:pub.10.1007/s00366-015-0400-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003281017
    234 https://doi.org/10.1007/s00366-015-0400-7
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s00366-015-0402-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022416262
    237 https://doi.org/10.1007/s00366-015-0402-5
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s00366-015-0415-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006981814
    240 https://doi.org/10.1007/s00366-015-0415-0
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s00366-016-0463-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027620432
    243 https://doi.org/10.1007/s00366-016-0463-0
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1007/s00366-016-0497-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053003292
    246 https://doi.org/10.1007/s00366-016-0497-3
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1007/s00366-017-0568-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092907006
    249 https://doi.org/10.1007/s00366-017-0568-0
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1007/s00366-018-0596-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101330868
    252 https://doi.org/10.1007/s00366-018-0596-4
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1007/s00366-019-00711-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111778658
    255 https://doi.org/10.1007/s00366-019-00711-6
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1007/s00366-019-00726-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1112634042
    258 https://doi.org/10.1007/s00366-019-00726-z
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1007/s00366-019-00770-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114039927
    261 https://doi.org/10.1007/s00366-019-00770-9
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1007/s00366-019-00808-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1117495481
    264 https://doi.org/10.1007/s00366-019-00808-y
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1007/s00366-019-00816-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1117731285
    267 https://doi.org/10.1007/s00366-019-00816-y
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1007/s00366-019-00849-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120475015
    270 https://doi.org/10.1007/s00366-019-00849-3
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1007/s00521-011-0631-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039536792
    273 https://doi.org/10.1007/s00521-011-0631-5
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1007/s00521-016-2434-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009507452
    276 https://doi.org/10.1007/s00521-016-2434-1
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/s00521-016-2746-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030713151
    279 https://doi.org/10.1007/s00521-016-2746-1
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/s00521-018-03965-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111154918
    282 https://doi.org/10.1007/s00521-018-03965-1
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1007/s00521-018-3717-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107055053
    285 https://doi.org/10.1007/s00521-018-3717-5
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/s00521-019-04663-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123266113
    288 https://doi.org/10.1007/s00521-019-04663-2
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/s00603-016-1015-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033227644
    291 https://doi.org/10.1007/s00603-016-1015-z
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/s006030050049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044493601
    294 https://doi.org/10.1007/s006030050049
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/s10064-010-0298-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010242509
    297 https://doi.org/10.1007/s10064-010-0298-7
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1007/s10064-014-0657-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016555821
    300 https://doi.org/10.1007/s10064-014-0657-x
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1007/s10064-016-0872-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006311390
    303 https://doi.org/10.1007/s10064-016-0872-8
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1007/s10064-019-01626-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123268773
    306 https://doi.org/10.1007/s10064-019-01626-8
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1007/s10706-015-9869-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008803471
    309 https://doi.org/10.1007/s10706-015-9869-5
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1007/s10706-017-0356-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1091477574
    312 https://doi.org/10.1007/s10706-017-0356-z
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1007/s10898-016-0455-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1028035110
    315 https://doi.org/10.1007/s10898-016-0455-z
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1007/s11053-018-9424-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109759308
    318 https://doi.org/10.1007/s11053-018-9424-1
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1007/s11053-019-09470-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1112475471
    321 https://doi.org/10.1007/s11053-019-09470-z
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1007/s11053-019-09503-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1116997542
    324 https://doi.org/10.1007/s11053-019-09503-7
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1007/s11053-019-09515-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117740481
    327 https://doi.org/10.1007/s11053-019-09515-3
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1007/s11053-019-09519-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1118016732
    330 https://doi.org/10.1007/s11053-019-09519-z
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1007/s11053-019-09532-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120092086
    333 https://doi.org/10.1007/s11053-019-09532-2
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1007/s11053-019-09605-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123594088
    336 https://doi.org/10.1007/s11053-019-09605-2
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1007/s11053-019-09611-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123791357
    339 https://doi.org/10.1007/s11053-019-09611-4
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1007/s11053-020-09616-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1124194648
    342 https://doi.org/10.1007/s11053-020-09616-4
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1007/s11600-019-00268-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112378322
    345 https://doi.org/10.1007/s11600-019-00268-4
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1007/s11600-019-00304-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114502390
    348 https://doi.org/10.1007/s11600-019-00304-3
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1007/s12517-009-0091-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003408679
    351 https://doi.org/10.1007/s12517-009-0091-8
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1007/s12517-012-0703-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032640964
    354 https://doi.org/10.1007/s12517-012-0703-6
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1007/s12517-013-1174-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038954491
    357 https://doi.org/10.1007/s12517-013-1174-0
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1007/s12517-015-1908-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025927733
    360 https://doi.org/10.1007/s12517-015-1908-2
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1007/s12559-014-9255-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005939490
    363 https://doi.org/10.1007/s12559-014-9255-2
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1007/s12665-015-4983-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041196690
    366 https://doi.org/10.1007/s12665-015-4983-5
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1007/s12665-016-5524-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039856740
    369 https://doi.org/10.1007/s12665-016-5524-6
    370 rdf:type schema:CreativeWork
    371 sg:pub.10.1007/s12665-016-6335-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009284080
    372 https://doi.org/10.1007/s12665-016-6335-5
    373 rdf:type schema:CreativeWork
    374 sg:pub.10.1007/s13762-016-0979-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033172041
    375 https://doi.org/10.1007/s13762-016-0979-2
    376 rdf:type schema:CreativeWork
    377 sg:pub.10.1023/a:1008306431147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009040383
    378 https://doi.org/10.1023/a:1008306431147
    379 rdf:type schema:CreativeWork
    380 sg:pub.10.1023/a:1012771025575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036497930
    381 https://doi.org/10.1023/a:1012771025575
    382 rdf:type schema:CreativeWork
    383 grid-institutes:grid.410877.d schema:alternateName Geotropik - Centre of Tropical Geoengineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
    384 schema:name Geotropik - Centre of Tropical Geoengineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
    385 rdf:type schema:Organization
    386 grid-institutes:grid.444650.7 schema:alternateName Department of Civil Engineering, National Institute of Technology Patna, Ashok Raj Path, 800005, Patna, India
    387 Department of Computer Science and Engineering, National Institute of Technology Patna, Patna, India
    388 schema:name Department of Civil Engineering, National Institute of Technology Patna, Ashok Raj Path, 800005, Patna, India
    389 Department of Computer Science and Engineering, National Institute of Technology Patna, Patna, India
    390 rdf:type schema:Organization
    391 grid-institutes:grid.444812.f schema:alternateName Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    392 schema:name Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical & Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    393 rdf:type schema:Organization
    394 grid-institutes:grid.444918.4 schema:alternateName Institute of Research and Development, Duy Tan University, 550000, Da Nang, Vietnam
    395 schema:name Institute of Research and Development, Duy Tan University, 550000, Da Nang, Vietnam
    396 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...