Discriminating Weathering Degree by Integrating Optical Sensor and SAR Satellite Images for Potential Mapping of Groundwater Resources in Basement Aquifers ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12-19

AUTHORS

Luís André Magaia, Katsuaki Koike, Tada-nori Goto, Alaa Ahmed Masoud

ABSTRACT

Unlike in coastal and sedimentary basins, regional-scale exploration of groundwater resources using only geophysical methods is costlier in consolidated rocks such as volcanic rocks and crystalline basement complexes in Africa because of the highly heterogeneous structure of aquifers. Therefore, advanced analysis of remotely sensed images and an accurate assessment of groundwater resources are crucial before carrying out a geophysical prospecting survey. This study proposed a joint analysis of satellite images from optical sensors and synthetic aperture radar (SAR) which aimed to enhance potential mapping accuracy of groundwater resources in crystalline rock areas in a semiarid region. The backscattering coefficient of the SAR data analysis effectively detected the zones of relatively high weathering degree and thus having thick permeable regolith. In addition, a modified clay index calculated from the four band reflectances of the optical sensor image—red, near infrared, and two shortwave infrared bands—was applied to discriminate clay-rich zones from high vegetation activity zones. The clay-rich zones detected corresponded with the highly weathered zones estimated from the small SAR backscattering coefficients. The zones also corresponded with a large density of faults and lineaments and furthermore were verified by high potential yields from groundwater wells. The thickness of weathered zones was likely to increase with a decreasing backscattering coefficient and higher modified clay index values. Conversely, large backscattering coefficients in the narrow zones along the major lineaments from large volumetric scattering because of high vegetation activity, as confirmed by the large vegetation index values, suggested that high moisture content was retained in the soils. In fact, the potential yields of the groundwater wells tended to increase near the lineaments. Accordingly, shallow groundwater occurrence is plausible in those zones. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11053-018-9445-9

DOI

http://dx.doi.org/10.1007/s11053-018-9445-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110758193


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Eduardo Mondlane University", 
          "id": "https://www.grid.ac/institutes/grid.8295.6", 
          "name": [
            "Department of Urban Management, Graduate School of Engineering, Kyoto University, 615-8540, Kyoto, Japan", 
            "Geology Department, Faculty of Sciences, Eduardo Mondlane University, Ave. Mozambique km 1.5, P.O. Box 257, Maputo, Mozambique"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magaia", 
        "givenName": "Lu\u00eds Andr\u00e9", 
        "id": "sg:person.013156244640.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013156244640.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Urban Management, Graduate School of Engineering, Kyoto University, 615-8540, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koike", 
        "givenName": "Katsuaki", 
        "id": "sg:person.016550730771.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550730771.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyoto University", 
          "id": "https://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Urban Management, Graduate School of Engineering, Kyoto University, 615-8540, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goto", 
        "givenName": "Tada-nori", 
        "id": "sg:person.015365452607.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365452607.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tanta University", 
          "id": "https://www.grid.ac/institutes/grid.412258.8", 
          "name": [
            "Geology Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masoud", 
        "givenName": "Alaa Ahmed", 
        "id": "sg:person.014340241154.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014340241154.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10040-011-0828-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005220811", 
          "https://doi.org/10.1007/s10040-011-0828-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0341-8162(02)00019-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005610375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0924-2716(93)90052-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005918025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0924-2716(93)90052-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005918025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2010.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007131392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsl.sp.1992.066.01.01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008722356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/ars.2015.41002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011293058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsl.qjeg.1985.018.01.06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018873480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2010.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019672327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2016.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021030652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earscirev.2016.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024670125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.foreco.2016.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028713213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030250174", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1030250174", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-1368(99)00007-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032074216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhydrol.2012.10.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035090413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(94)90134-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036317833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(94)90134-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036317833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geoderma.2015.11.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037399110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/014311697218223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037560387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-005-0437-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040125354", 
          "https://doi.org/10.1007/s10040-005-0437-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-005-0437-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040125354", 
          "https://doi.org/10.1007/s10040-005-0437-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-005-0437-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040125354", 
          "https://doi.org/10.1007/s10040-005-0437-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earscirev.2016.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042839730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100400050061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044008907", 
          "https://doi.org/10.1007/s100400050061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-007-0224-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045986979", 
          "https://doi.org/10.1007/s10040-007-0224-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1144/gsl.qjeg.1987.020.04.02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048472403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(95)00186-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049892526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1590/2317-4889201620160023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051248126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(91)90013-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052728949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0034-4257(91)90013-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052728949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.628792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2015.2415871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061360595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.1985.289497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061608119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2007.901027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2009.2023909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061611084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.218.4576.1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062525810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1936256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069660313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-017-1540-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083526363", 
          "https://doi.org/10.1007/s10040-017-1540-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10040-017-1540-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083526363", 
          "https://doi.org/10.1007/s10040-017-1540-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enggeo.2017.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092167607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-08-100355-8.00014-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092195372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11053-017-9360-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093027064", 
          "https://doi.org/10.1007/s11053-017-9360-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511812903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098737487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.catena.2018.01.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100811628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2018.02.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101560402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17226/2309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108736386"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12-19", 
    "datePublishedReg": "2018-12-19", 
    "description": "Unlike in coastal and sedimentary basins, regional-scale exploration of groundwater resources using only geophysical methods is costlier in consolidated rocks such as volcanic rocks and crystalline basement complexes in Africa because of the highly heterogeneous structure of aquifers. Therefore, advanced analysis of remotely sensed images and an accurate assessment of groundwater resources are crucial before carrying out a geophysical prospecting survey. This study proposed a joint analysis of satellite images from optical sensors and synthetic aperture radar (SAR) which aimed to enhance potential mapping accuracy of groundwater resources in crystalline rock areas in a semiarid region. The backscattering coefficient of the SAR data analysis effectively detected the zones of relatively high weathering degree and thus having thick permeable regolith. In addition, a modified clay index calculated from the four band reflectances of the optical sensor image\u2014red, near infrared, and two shortwave infrared bands\u2014was applied to discriminate clay-rich zones from high vegetation activity zones. The clay-rich zones detected corresponded with the highly weathered zones estimated from the small SAR backscattering coefficients. The zones also corresponded with a large density of faults and lineaments and furthermore were verified by high potential yields from groundwater wells. The thickness of weathered zones was likely to increase with a decreasing backscattering coefficient and higher modified clay index values. Conversely, large backscattering coefficients in the narrow zones along the major lineaments from large volumetric scattering because of high vegetation activity, as confirmed by the large vegetation index values, suggested that high moisture content was retained in the soils. In fact, the potential yields of the groundwater wells tended to increase near the lineaments. Accordingly, shallow groundwater occurrence is plausible in those zones.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11053-018-9445-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7521473", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136218", 
        "issn": [
          "0961-1444", 
          "1520-7439"
        ], 
        "name": "Natural Resources Research", 
        "type": "Periodical"
      }
    ], 
    "name": "Discriminating Weathering Degree by Integrating Optical Sensor and SAR Satellite Images for Potential Mapping of Groundwater Resources in Basement Aquifers of Semiarid Regions", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "124bfb4240cb9083e88c7d8d69fb237817c81531d00b7c4daf40bd7f30cbb9a5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11053-018-9445-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110758193"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11053-018-9445-9", 
      "https://app.dimensions.ai/details/publication/pub.1110758193"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000298_0000000298/records_26534_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11053-018-9445-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11053-018-9445-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11053-018-9445-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11053-018-9445-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11053-018-9445-9'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      64 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11053-018-9445-9 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N600e92eb536a4e77ba02613414d9d121
4 schema:citation sg:pub.10.1007/s10040-005-0437-6
5 sg:pub.10.1007/s10040-007-0224-7
6 sg:pub.10.1007/s10040-011-0828-9
7 sg:pub.10.1007/s10040-017-1540-1
8 sg:pub.10.1007/s100400050061
9 sg:pub.10.1007/s11053-017-9360-5
10 https://app.dimensions.ai/details/publication/pub.1030250174
11 https://doi.org/10.1016/0034-4257(91)90013-v
12 https://doi.org/10.1016/0034-4257(94)90134-1
13 https://doi.org/10.1016/0034-4257(95)00186-7
14 https://doi.org/10.1016/0924-2716(93)90052-o
15 https://doi.org/10.1016/b978-0-08-100355-8.00014-x
16 https://doi.org/10.1016/j.catena.2018.01.020
17 https://doi.org/10.1016/j.earscirev.2016.07.002
18 https://doi.org/10.1016/j.earscirev.2016.07.003
19 https://doi.org/10.1016/j.enggeo.2017.10.003
20 https://doi.org/10.1016/j.foreco.2016.07.012
21 https://doi.org/10.1016/j.geoderma.2015.11.033
22 https://doi.org/10.1016/j.jhydrol.2012.10.044
23 https://doi.org/10.1016/j.rse.2010.01.001
24 https://doi.org/10.1016/j.rse.2010.03.004
25 https://doi.org/10.1016/j.rse.2016.04.013
26 https://doi.org/10.1016/j.rse.2018.02.065
27 https://doi.org/10.1016/s0169-1368(99)00007-4
28 https://doi.org/10.1016/s0341-8162(02)00019-x
29 https://doi.org/10.1017/cbo9780511812903
30 https://doi.org/10.1080/014311697218223
31 https://doi.org/10.1109/36.628792
32 https://doi.org/10.1109/lgrs.2015.2415871
33 https://doi.org/10.1109/tgrs.1985.289497
34 https://doi.org/10.1109/tgrs.2007.901027
35 https://doi.org/10.1109/tgrs.2009.2023909
36 https://doi.org/10.1126/science.218.4576.1004
37 https://doi.org/10.1144/gsl.qjeg.1985.018.01.06
38 https://doi.org/10.1144/gsl.qjeg.1987.020.04.02
39 https://doi.org/10.1144/gsl.sp.1992.066.01.01
40 https://doi.org/10.1590/2317-4889201620160023
41 https://doi.org/10.17226/2309
42 https://doi.org/10.2307/1936256
43 https://doi.org/10.4236/ars.2015.41002
44 schema:datePublished 2018-12-19
45 schema:datePublishedReg 2018-12-19
46 schema:description Unlike in coastal and sedimentary basins, regional-scale exploration of groundwater resources using only geophysical methods is costlier in consolidated rocks such as volcanic rocks and crystalline basement complexes in Africa because of the highly heterogeneous structure of aquifers. Therefore, advanced analysis of remotely sensed images and an accurate assessment of groundwater resources are crucial before carrying out a geophysical prospecting survey. This study proposed a joint analysis of satellite images from optical sensors and synthetic aperture radar (SAR) which aimed to enhance potential mapping accuracy of groundwater resources in crystalline rock areas in a semiarid region. The backscattering coefficient of the SAR data analysis effectively detected the zones of relatively high weathering degree and thus having thick permeable regolith. In addition, a modified clay index calculated from the four band reflectances of the optical sensor image—red, near infrared, and two shortwave infrared bands—was applied to discriminate clay-rich zones from high vegetation activity zones. The clay-rich zones detected corresponded with the highly weathered zones estimated from the small SAR backscattering coefficients. The zones also corresponded with a large density of faults and lineaments and furthermore were verified by high potential yields from groundwater wells. The thickness of weathered zones was likely to increase with a decreasing backscattering coefficient and higher modified clay index values. Conversely, large backscattering coefficients in the narrow zones along the major lineaments from large volumetric scattering because of high vegetation activity, as confirmed by the large vegetation index values, suggested that high moisture content was retained in the soils. In fact, the potential yields of the groundwater wells tended to increase near the lineaments. Accordingly, shallow groundwater occurrence is plausible in those zones.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree false
50 schema:isPartOf sg:journal.1136218
51 schema:name Discriminating Weathering Degree by Integrating Optical Sensor and SAR Satellite Images for Potential Mapping of Groundwater Resources in Basement Aquifers of Semiarid Regions
52 schema:pagination 1-19
53 schema:productId N0a197182bb2f4bb89939883ce08b4843
54 N13a492ecc0334a999027cdaec31c79c3
55 Nf2017780fb824207a10ce0a705efa2ba
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110758193
57 https://doi.org/10.1007/s11053-018-9445-9
58 schema:sdDatePublished 2019-04-11T08:25
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N254e76207bb04de983454a78f3f0bcbe
61 schema:url https://link.springer.com/10.1007%2Fs11053-018-9445-9
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N07aac96150a74c0d9958b35160b065b3 rdf:first sg:person.016550730771.61
66 rdf:rest N71fc1107e18b4f0ebff032e42785434d
67 N0a197182bb2f4bb89939883ce08b4843 schema:name dimensions_id
68 schema:value pub.1110758193
69 rdf:type schema:PropertyValue
70 N13a492ecc0334a999027cdaec31c79c3 schema:name doi
71 schema:value 10.1007/s11053-018-9445-9
72 rdf:type schema:PropertyValue
73 N254e76207bb04de983454a78f3f0bcbe schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N600e92eb536a4e77ba02613414d9d121 rdf:first sg:person.013156244640.12
76 rdf:rest N07aac96150a74c0d9958b35160b065b3
77 N71fc1107e18b4f0ebff032e42785434d rdf:first sg:person.015365452607.68
78 rdf:rest Nceb399ade93d43dcb7157efc85d00571
79 Nceb399ade93d43dcb7157efc85d00571 rdf:first sg:person.014340241154.96
80 rdf:rest rdf:nil
81 Nf2017780fb824207a10ce0a705efa2ba schema:name readcube_id
82 schema:value 124bfb4240cb9083e88c7d8d69fb237817c81531d00b7c4daf40bd7f30cbb9a5
83 rdf:type schema:PropertyValue
84 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
85 schema:name Earth Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Geography and Environmental Geoscience
89 rdf:type schema:DefinedTerm
90 sg:grant.7521473 http://pending.schema.org/fundedItem sg:pub.10.1007/s11053-018-9445-9
91 rdf:type schema:MonetaryGrant
92 sg:journal.1136218 schema:issn 0961-1444
93 1520-7439
94 schema:name Natural Resources Research
95 rdf:type schema:Periodical
96 sg:person.013156244640.12 schema:affiliation https://www.grid.ac/institutes/grid.8295.6
97 schema:familyName Magaia
98 schema:givenName Luís André
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013156244640.12
100 rdf:type schema:Person
101 sg:person.014340241154.96 schema:affiliation https://www.grid.ac/institutes/grid.412258.8
102 schema:familyName Masoud
103 schema:givenName Alaa Ahmed
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014340241154.96
105 rdf:type schema:Person
106 sg:person.015365452607.68 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
107 schema:familyName Goto
108 schema:givenName Tada-nori
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365452607.68
110 rdf:type schema:Person
111 sg:person.016550730771.61 schema:affiliation https://www.grid.ac/institutes/grid.258799.8
112 schema:familyName Koike
113 schema:givenName Katsuaki
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016550730771.61
115 rdf:type schema:Person
116 sg:pub.10.1007/s10040-005-0437-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040125354
117 https://doi.org/10.1007/s10040-005-0437-6
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10040-007-0224-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045986979
120 https://doi.org/10.1007/s10040-007-0224-7
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10040-011-0828-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005220811
123 https://doi.org/10.1007/s10040-011-0828-9
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s10040-017-1540-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083526363
126 https://doi.org/10.1007/s10040-017-1540-1
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s100400050061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044008907
129 https://doi.org/10.1007/s100400050061
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s11053-017-9360-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093027064
132 https://doi.org/10.1007/s11053-017-9360-5
133 rdf:type schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1030250174 schema:CreativeWork
135 https://doi.org/10.1016/0034-4257(91)90013-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1052728949
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0034-4257(94)90134-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036317833
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/0034-4257(95)00186-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049892526
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0924-2716(93)90052-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1005918025
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/b978-0-08-100355-8.00014-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1092195372
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.catena.2018.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100811628
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.earscirev.2016.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024670125
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.earscirev.2016.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042839730
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.enggeo.2017.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092167607
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.foreco.2016.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028713213
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.geoderma.2015.11.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037399110
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.jhydrol.2012.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035090413
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.rse.2010.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019672327
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.rse.2010.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007131392
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.rse.2016.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021030652
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.rse.2018.02.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101560402
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0169-1368(99)00007-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032074216
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0341-8162(02)00019-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005610375
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1017/cbo9780511812903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098737487
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1080/014311697218223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037560387
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/36.628792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161685
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/lgrs.2015.2415871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061360595
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tgrs.1985.289497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061608119
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tgrs.2007.901027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610268
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tgrs.2009.2023909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061611084
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1126/science.218.4576.1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062525810
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1144/gsl.qjeg.1985.018.01.06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018873480
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1144/gsl.qjeg.1987.020.04.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048472403
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1144/gsl.sp.1992.066.01.01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008722356
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1590/2317-4889201620160023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051248126
194 rdf:type schema:CreativeWork
195 https://doi.org/10.17226/2309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108736386
196 rdf:type schema:CreativeWork
197 https://doi.org/10.2307/1936256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069660313
198 rdf:type schema:CreativeWork
199 https://doi.org/10.4236/ars.2015.41002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011293058
200 rdf:type schema:CreativeWork
201 https://www.grid.ac/institutes/grid.258799.8 schema:alternateName Kyoto University
202 schema:name Department of Urban Management, Graduate School of Engineering, Kyoto University, 615-8540, Kyoto, Japan
203 rdf:type schema:Organization
204 https://www.grid.ac/institutes/grid.412258.8 schema:alternateName Tanta University
205 schema:name Geology Department, Faculty of Science, Tanta University, 31527, Tanta, Egypt
206 rdf:type schema:Organization
207 https://www.grid.ac/institutes/grid.8295.6 schema:alternateName Eduardo Mondlane University
208 schema:name Department of Urban Management, Graduate School of Engineering, Kyoto University, 615-8540, Kyoto, Japan
209 Geology Department, Faculty of Sciences, Eduardo Mondlane University, Ave. Mozambique km 1.5, P.O. Box 257, Maputo, Mozambique
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...