Projection of Iron Ore Production View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-09

AUTHORS

Steve Mohr, Damien Giurco, Mohan Yellishetty, James Ward, Gavin Mudd

ABSTRACT

A comprehensive country-by-country projection of world iron ore production is presented along with alternative scenarios and a sensitivity analysis. The supply-driven modelling approach follows Mohr (Projection of world fossil fuel production with supply and demand interactions, PhD Thesis, http://www.theoildrum.com/node/6782, 2010) using an ultimately recoverable resource of 346 Gt of iron ore. Production is estimated to have a choppy plateau starting in 2017 until 2050 after which production rapidly declines. The undulating plateau is due to Chinese iron ore production peaking earlier followed by Australia and Brazil in turn. Alternative scenarios indicate that the model is sensitive to increases in Australian and Brazilian resources, and that African iron ore production can shift the peak date only if the African Ultimately Recoverable Resources (URR) is 5 times larger than the estimate used. Changes to the demand for iron ore driven by substitution or recycling are not modelled. The relatively near-term peak in iron ore supply is likely to create a global challenge to manufacturing and construction and ultimately the world economy. More... »

PAGES

317-327

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11053-014-9256-6

DOI

http://dx.doi.org/10.1007/s11053-014-9256-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052357841


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Technology Sydney", 
          "id": "https://www.grid.ac/institutes/grid.117476.2", 
          "name": [
            "Institute for Sustainable Futures, University of Technology, Sydney, 2007, Ultimo, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohr", 
        "givenName": "Steve", 
        "id": "sg:person.016015232155.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015232155.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology Sydney", 
          "id": "https://www.grid.ac/institutes/grid.117476.2", 
          "name": [
            "Institute for Sustainable Futures, University of Technology, Sydney, 2007, Ultimo, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giurco", 
        "givenName": "Damien", 
        "id": "sg:person.015204674501.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015204674501.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Division of Mining & Resources Engineering, Department of Civil Engineering, Monash University, Wellington Road, 3800, Clayton, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yellishetty", 
        "givenName": "Mohan", 
        "id": "sg:person.014065643567.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065643567.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of South Australia", 
          "id": "https://www.grid.ac/institutes/grid.1026.5", 
          "name": [
            "School of Natural & Built Environments, University of South Australia, GPO Box 2471, 5000, Adelaide, SA, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ward", 
        "givenName": "James", 
        "id": "sg:person.0725761767.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725761767.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Department of Civil Engineering, Monash University, Wellington Road, 3800, Clayton, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mudd", 
        "givenName": "Gavin", 
        "id": "sg:person.014703775515.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014703775515.89"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-349-06028-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003819496", 
          "https://doi.org/10.1007/978-1-349-06028-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-06028-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003819496", 
          "https://doi.org/10.1007/978-1-349-06028-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.envsci.2011.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010740351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/min2010065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017113075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2014.05.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017569415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.resconrec.2010.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023088435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11053-011-9163-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023326763", 
          "https://doi.org/10.1007/s11053-011-9163-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jclepro.2010.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024020711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloenvcha.2011.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024719975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.resconrec.2013.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032963843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-8489.12007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036377562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es100044n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055501287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es100044n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055501287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.212.4491.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062522869"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-09", 
    "datePublishedReg": "2015-09-01", 
    "description": "A comprehensive country-by-country projection of world iron ore production is presented along with alternative scenarios and a sensitivity analysis. The supply-driven modelling approach follows Mohr (Projection of world fossil fuel production with supply and demand interactions, PhD Thesis, http://www.theoildrum.com/node/6782, 2010) using an ultimately recoverable resource of 346 Gt of iron ore. Production is estimated to have a choppy plateau starting in 2017 until 2050 after which production rapidly declines. The undulating plateau is due to Chinese iron ore production peaking earlier followed by Australia and Brazil in turn. Alternative scenarios indicate that the model is sensitive to increases in Australian and Brazilian resources, and that African iron ore production can shift the peak date only if the African Ultimately Recoverable Resources (URR) is 5 times larger than the estimate used. Changes to the demand for iron ore driven by substitution or recycling are not modelled. The relatively near-term peak in iron ore supply is likely to create a global challenge to manufacturing and construction and ultimately the world economy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11053-014-9256-6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136218", 
        "issn": [
          "0961-1444", 
          "1520-7439"
        ], 
        "name": "Natural Resources Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Projection of Iron Ore Production", 
    "pagination": "317-327", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f965cbdbaf1aa4ab8c58d35d109d934ba7735f6593ac831534052046159b6451"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11053-014-9256-6"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052357841"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11053-014-9256-6", 
      "https://app.dimensions.ai/details/publication/pub.1052357841"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11053-014-9256-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11053-014-9256-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11053-014-9256-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11053-014-9256-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11053-014-9256-6'


 

This table displays all metadata directly associated to this object as RDF triples.

134 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11053-014-9256-6 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N1f829d1ebb1d4eb980dfc14bb5c2f3cf
4 schema:citation sg:pub.10.1007/978-1-349-06028-3
5 sg:pub.10.1007/s11053-011-9163-z
6 https://doi.org/10.1016/j.envsci.2011.04.008
7 https://doi.org/10.1016/j.gloenvcha.2011.08.009
8 https://doi.org/10.1016/j.jclepro.2010.12.006
9 https://doi.org/10.1016/j.jclepro.2014.05.102
10 https://doi.org/10.1016/j.resconrec.2010.03.003
11 https://doi.org/10.1016/j.resconrec.2013.10.005
12 https://doi.org/10.1021/es100044n
13 https://doi.org/10.1111/1467-8489.12007
14 https://doi.org/10.1126/science.212.4491.132
15 https://doi.org/10.3390/min2010065
16 schema:datePublished 2015-09
17 schema:datePublishedReg 2015-09-01
18 schema:description A comprehensive country-by-country projection of world iron ore production is presented along with alternative scenarios and a sensitivity analysis. The supply-driven modelling approach follows Mohr (Projection of world fossil fuel production with supply and demand interactions, PhD Thesis, http://www.theoildrum.com/node/6782, 2010) using an ultimately recoverable resource of 346 Gt of iron ore. Production is estimated to have a choppy plateau starting in 2017 until 2050 after which production rapidly declines. The undulating plateau is due to Chinese iron ore production peaking earlier followed by Australia and Brazil in turn. Alternative scenarios indicate that the model is sensitive to increases in Australian and Brazilian resources, and that African iron ore production can shift the peak date only if the African Ultimately Recoverable Resources (URR) is 5 times larger than the estimate used. Changes to the demand for iron ore driven by substitution or recycling are not modelled. The relatively near-term peak in iron ore supply is likely to create a global challenge to manufacturing and construction and ultimately the world economy.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N078eb585f36e4a45bbff6d2429fb56da
23 N83eaf62a53b54af3bdd801f297c58c5d
24 sg:journal.1136218
25 schema:name Projection of Iron Ore Production
26 schema:pagination 317-327
27 schema:productId N66bd43350309490290d29381e35c512a
28 N6843f37af2a94a7782f4e2d3ed855a97
29 Ncf0cc1a50e9d499e93a8106eeb2d42e4
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052357841
31 https://doi.org/10.1007/s11053-014-9256-6
32 schema:sdDatePublished 2019-04-10T19:09
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ne8e97439e2294ac1a26313144d791424
35 schema:url http://link.springer.com/10.1007%2Fs11053-014-9256-6
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N078eb585f36e4a45bbff6d2429fb56da schema:issueNumber 3
40 rdf:type schema:PublicationIssue
41 N1f829d1ebb1d4eb980dfc14bb5c2f3cf rdf:first sg:person.016015232155.08
42 rdf:rest N80b87e950b08408d8d423ff28ada60e2
43 N27733562127d44799e44428068c1d7a5 rdf:first sg:person.014703775515.89
44 rdf:rest rdf:nil
45 N66bd43350309490290d29381e35c512a schema:name doi
46 schema:value 10.1007/s11053-014-9256-6
47 rdf:type schema:PropertyValue
48 N6843f37af2a94a7782f4e2d3ed855a97 schema:name dimensions_id
49 schema:value pub.1052357841
50 rdf:type schema:PropertyValue
51 N80b87e950b08408d8d423ff28ada60e2 rdf:first sg:person.015204674501.86
52 rdf:rest Ned3cead15b484a6da210a7acad2aefe7
53 N83eaf62a53b54af3bdd801f297c58c5d schema:volumeNumber 24
54 rdf:type schema:PublicationVolume
55 Na7182eab6a4e47dcab08aa7396124779 rdf:first sg:person.0725761767.14
56 rdf:rest N27733562127d44799e44428068c1d7a5
57 Ncf0cc1a50e9d499e93a8106eeb2d42e4 schema:name readcube_id
58 schema:value f965cbdbaf1aa4ab8c58d35d109d934ba7735f6593ac831534052046159b6451
59 rdf:type schema:PropertyValue
60 Ne8e97439e2294ac1a26313144d791424 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Ned3cead15b484a6da210a7acad2aefe7 rdf:first sg:person.014065643567.70
63 rdf:rest Na7182eab6a4e47dcab08aa7396124779
64 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
65 schema:name Economics
66 rdf:type schema:DefinedTerm
67 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
68 schema:name Applied Economics
69 rdf:type schema:DefinedTerm
70 sg:journal.1136218 schema:issn 0961-1444
71 1520-7439
72 schema:name Natural Resources Research
73 rdf:type schema:Periodical
74 sg:person.014065643567.70 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
75 schema:familyName Yellishetty
76 schema:givenName Mohan
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014065643567.70
78 rdf:type schema:Person
79 sg:person.014703775515.89 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
80 schema:familyName Mudd
81 schema:givenName Gavin
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014703775515.89
83 rdf:type schema:Person
84 sg:person.015204674501.86 schema:affiliation https://www.grid.ac/institutes/grid.117476.2
85 schema:familyName Giurco
86 schema:givenName Damien
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015204674501.86
88 rdf:type schema:Person
89 sg:person.016015232155.08 schema:affiliation https://www.grid.ac/institutes/grid.117476.2
90 schema:familyName Mohr
91 schema:givenName Steve
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015232155.08
93 rdf:type schema:Person
94 sg:person.0725761767.14 schema:affiliation https://www.grid.ac/institutes/grid.1026.5
95 schema:familyName Ward
96 schema:givenName James
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725761767.14
98 rdf:type schema:Person
99 sg:pub.10.1007/978-1-349-06028-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003819496
100 https://doi.org/10.1007/978-1-349-06028-3
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s11053-011-9163-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023326763
103 https://doi.org/10.1007/s11053-011-9163-z
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.envsci.2011.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010740351
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.gloenvcha.2011.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024719975
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.jclepro.2010.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024020711
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jclepro.2014.05.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017569415
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.resconrec.2010.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023088435
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.resconrec.2013.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032963843
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/es100044n schema:sameAs https://app.dimensions.ai/details/publication/pub.1055501287
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1111/1467-8489.12007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036377562
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1126/science.212.4491.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062522869
122 rdf:type schema:CreativeWork
123 https://doi.org/10.3390/min2010065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017113075
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.1002.3 schema:alternateName Monash University
126 schema:name Department of Civil Engineering, Monash University, Wellington Road, 3800, Clayton, VIC, Australia
127 Division of Mining & Resources Engineering, Department of Civil Engineering, Monash University, Wellington Road, 3800, Clayton, VIC, Australia
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.1026.5 schema:alternateName University of South Australia
130 schema:name School of Natural & Built Environments, University of South Australia, GPO Box 2471, 5000, Adelaide, SA, Australia
131 rdf:type schema:Organization
132 https://www.grid.ac/institutes/grid.117476.2 schema:alternateName University of Technology Sydney
133 schema:name Institute for Sustainable Futures, University of Technology, Sydney, 2007, Ultimo, NSW, Australia
134 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...