An Empirical Method to Make Oil Production Models Tolerant to Anomalies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-03

AUTHORS

S. H. Mohr, G. M. Evans

ABSTRACT

Modeling oil production is of interest to society and hotly debated. Often anomalies have occurred which makes modeling oil production via a particular theory (e.g., Hubbert’s bell curve) difficult. The empirical method described here allows for such historic anomalies to be incorporated while still using the underly theory. This method is explained using Hubbert’s bell curve and Former Soviet Union oil production as an example. More... »

PAGES

1-5

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11053-008-9083-8

DOI

http://dx.doi.org/10.1007/s11053-008-9083-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008571400


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Newcastle Australia", 
          "id": "https://www.grid.ac/institutes/grid.266842.c", 
          "name": [
            "Chemical Engineering, Faculty of Engineering and Built Environment, University of Newcastle, University Drive, 2308, Callaghan, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mohr", 
        "givenName": "S. H.", 
        "id": "sg:person.016015232155.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015232155.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Newcastle Australia", 
          "id": "https://www.grid.ac/institutes/grid.266842.c", 
          "name": [
            "Chemical Engineering, Faculty of Engineering and Built Environment, University of Newcastle, University Drive, 2308, Callaghan, NSW, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evans", 
        "givenName": "G. M.", 
        "id": "sg:person.012546401151.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012546401151.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-349-06028-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003819496", 
          "https://doi.org/10.1007/978-1-349-06028-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-06028-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003819496", 
          "https://doi.org/10.1007/978-1-349-06028-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019856621335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008992848", 
          "https://doi.org/10.1023/a:1019856621335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2006.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026497895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1007587132700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041296364", 
          "https://doi.org/10.1023/a:1007587132700"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-03", 
    "datePublishedReg": "2009-03-01", 
    "description": "Modeling oil production is of interest to society and hotly debated. Often anomalies have occurred which makes modeling oil production via a particular theory (e.g., Hubbert\u2019s bell curve) difficult. The empirical method described here allows for such historic anomalies to be incorporated while still using the underly theory. This method is explained using Hubbert\u2019s bell curve and Former Soviet Union oil production as an example.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11053-008-9083-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136218", 
        "issn": [
          "0961-1444", 
          "1520-7439"
        ], 
        "name": "Natural Resources Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "An Empirical Method to Make Oil Production Models Tolerant to Anomalies", 
    "pagination": "1-5", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28d606a2c38f36e88d1d79ec7f44c336086c415e0fa5d259e7cf4713dd1374a3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11053-008-9083-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008571400"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11053-008-9083-8", 
      "https://app.dimensions.ai/details/publication/pub.1008571400"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11053-008-9083-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11053-008-9083-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11053-008-9083-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11053-008-9083-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11053-008-9083-8'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11053-008-9083-8 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N6fdc11b0535443858d4b2e4b093055e8
4 schema:citation sg:pub.10.1007/978-1-349-06028-3
5 sg:pub.10.1023/a:1007587132700
6 sg:pub.10.1023/a:1019856621335
7 https://doi.org/10.1016/j.enpol.2006.11.004
8 schema:datePublished 2009-03
9 schema:datePublishedReg 2009-03-01
10 schema:description Modeling oil production is of interest to society and hotly debated. Often anomalies have occurred which makes modeling oil production via a particular theory (e.g., Hubbert’s bell curve) difficult. The empirical method described here allows for such historic anomalies to be incorporated while still using the underly theory. This method is explained using Hubbert’s bell curve and Former Soviet Union oil production as an example.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N4df99afddead48a0a014a8793f7fd10c
15 N8ae6d6741d504c4580e2ddc95f2507a6
16 sg:journal.1136218
17 schema:name An Empirical Method to Make Oil Production Models Tolerant to Anomalies
18 schema:pagination 1-5
19 schema:productId N0d2cf4fbe03c40cf979efff73b3a2fea
20 N0f0710da8b6f46afbfceeff354a31ca9
21 N73d9d59fc10c42e983c39f62fa42ec9e
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008571400
23 https://doi.org/10.1007/s11053-008-9083-8
24 schema:sdDatePublished 2019-04-10T20:46
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nf890898dfd6d4c98820b79c997b5ab68
27 schema:url http://link.springer.com/10.1007%2Fs11053-008-9083-8
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N0d2cf4fbe03c40cf979efff73b3a2fea schema:name dimensions_id
32 schema:value pub.1008571400
33 rdf:type schema:PropertyValue
34 N0f0710da8b6f46afbfceeff354a31ca9 schema:name readcube_id
35 schema:value 28d606a2c38f36e88d1d79ec7f44c336086c415e0fa5d259e7cf4713dd1374a3
36 rdf:type schema:PropertyValue
37 N4df99afddead48a0a014a8793f7fd10c schema:issueNumber 1
38 rdf:type schema:PublicationIssue
39 N6fdc11b0535443858d4b2e4b093055e8 rdf:first sg:person.016015232155.08
40 rdf:rest Ne36af2b2c04f4625a1928c38ce0dd667
41 N73d9d59fc10c42e983c39f62fa42ec9e schema:name doi
42 schema:value 10.1007/s11053-008-9083-8
43 rdf:type schema:PropertyValue
44 N8ae6d6741d504c4580e2ddc95f2507a6 schema:volumeNumber 18
45 rdf:type schema:PublicationVolume
46 Ne36af2b2c04f4625a1928c38ce0dd667 rdf:first sg:person.012546401151.52
47 rdf:rest rdf:nil
48 Nf890898dfd6d4c98820b79c997b5ab68 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
51 schema:name Biological Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
54 schema:name Biochemistry and Cell Biology
55 rdf:type schema:DefinedTerm
56 sg:journal.1136218 schema:issn 0961-1444
57 1520-7439
58 schema:name Natural Resources Research
59 rdf:type schema:Periodical
60 sg:person.012546401151.52 schema:affiliation https://www.grid.ac/institutes/grid.266842.c
61 schema:familyName Evans
62 schema:givenName G. M.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012546401151.52
64 rdf:type schema:Person
65 sg:person.016015232155.08 schema:affiliation https://www.grid.ac/institutes/grid.266842.c
66 schema:familyName Mohr
67 schema:givenName S. H.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016015232155.08
69 rdf:type schema:Person
70 sg:pub.10.1007/978-1-349-06028-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003819496
71 https://doi.org/10.1007/978-1-349-06028-3
72 rdf:type schema:CreativeWork
73 sg:pub.10.1023/a:1007587132700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041296364
74 https://doi.org/10.1023/a:1007587132700
75 rdf:type schema:CreativeWork
76 sg:pub.10.1023/a:1019856621335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008992848
77 https://doi.org/10.1023/a:1019856621335
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/j.enpol.2006.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026497895
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.266842.c schema:alternateName University of Newcastle Australia
82 schema:name Chemical Engineering, Faculty of Engineering and Built Environment, University of Newcastle, University Drive, 2308, Callaghan, NSW, Australia
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...