Hydrated zirconia nanoparticles as media for electrical charge accumulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-01-15

AUTHORS

Artem Shylo, Igor Danilenko, Oksana Gorban, Oleksandr Doroshkevich, Igor Nosolev, Tetyana Konstantinova, Andriy Lyubchyk

ABSTRACT

This study is devoted to creating media for the accumulation of electrical energy based on zirconia nanoparticles. The effect of charge accumulation by compacted zirconia nanoparticles, the manifestation of which depends on the size of the particles and the degree of hydration of their surface, was found. It is shown that for the system of hydrated nanoparticles, the formation of the dielectric constant of the entire structure as a whole is influenced by the dielectric properties of the nanoparticle materials and water on its surface. The difference in the dielectric properties of the filler (water) and the matrix (material of zirconia nanoparticles) leads to a strong increase in the dielectric constant of hydrated compacted nanoparticles due to the Maxwell–Wagner effect, which is a promising application in the development of energy storage media.Graphical abstract More... »

PAGES

18

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11051-022-05407-5

DOI

http://dx.doi.org/10.1007/s11051-022-05407-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1144707647


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shylo", 
        "givenName": "Artem", 
        "id": "sg:person.011111325312.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011111325312.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Danilenko", 
        "givenName": "Igor", 
        "id": "sg:person.0732652645.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732652645.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorban", 
        "givenName": "Oksana", 
        "id": "sg:person.011756271301.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011756271301.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia", 
          "id": "http://www.grid.ac/institutes/grid.33762.33", 
          "name": [
            "Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine", 
            "Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doroshkevich", 
        "givenName": "Oleksandr", 
        "id": "sg:person.010504542113.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010504542113.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nosolev", 
        "givenName": "Igor", 
        "id": "sg:person.014470625437.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014470625437.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.418751.e", 
          "name": [
            "Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konstantinova", 
        "givenName": "Tetyana", 
        "id": "sg:person.01000766045.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000766045.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lus\u00f3fona University, Lisbon, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.164242.7", 
          "name": [
            "NANOTECHCENTER, Kyiv, Ukraine", 
            "Lus\u00f3fona University, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyubchyk", 
        "givenName": "Andriy", 
        "id": "sg:person.016040157763.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016040157763.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01290392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018114686", 
          "https://doi.org/10.1007/bf01290392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01117947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010031656", 
          "https://doi.org/10.1007/bf01117947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-011-0329-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025424151", 
          "https://doi.org/10.1007/s11051-011-0329-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063774510050275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053528665", 
          "https://doi.org/10.1134/s1063774510050275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016982782", 
          "https://doi.org/10.1038/nmat1513"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-01-15", 
    "datePublishedReg": "2022-01-15", 
    "description": "This study is devoted to creating media for the accumulation of electrical energy based on zirconia nanoparticles. The effect of charge accumulation by compacted zirconia nanoparticles, the manifestation of which depends on the size of the particles and the degree of hydration of their surface, was found. It is shown that for the system of hydrated nanoparticles, the formation of the dielectric constant of the entire structure as a whole is influenced by the dielectric properties of the nanoparticle materials and water on its surface. The difference in the dielectric properties of the filler (water) and the matrix (material of zirconia nanoparticles) leads to a strong increase in the dielectric constant of hydrated compacted nanoparticles due to the Maxwell\u2013Wagner effect, which is a promising application in the development of energy storage media.Graphical abstract", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11051-022-05407-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028317", 
        "issn": [
          "1388-0764", 
          "1572-896X"
        ], 
        "name": "Journal of Nanoparticle Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "zirconia nanoparticles", 
      "dielectric properties", 
      "charge accumulation", 
      "energy storage medium", 
      "nanoparticle materials", 
      "hydrated nanoparticles", 
      "nanoparticles", 
      "degree of hydration", 
      "electrical charge accumulation", 
      "promising applications", 
      "electrical energy", 
      "Maxwell-Wagner effect", 
      "compacted nanoparticles", 
      "entire structure", 
      "storage media", 
      "dielectric", 
      "surface", 
      "properties", 
      "filler", 
      "hydration", 
      "water", 
      "medium", 
      "particles", 
      "formation", 
      "materials", 
      "strong increase", 
      "structure", 
      "energy", 
      "matrix", 
      "applications", 
      "effect", 
      "system", 
      "size", 
      "increase", 
      "degree", 
      "accumulation", 
      "development", 
      "study", 
      "whole", 
      "differences", 
      "manifestations"
    ], 
    "name": "Hydrated zirconia nanoparticles as media for electrical charge accumulation", 
    "pagination": "18", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1144707647"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11051-022-05407-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11051-022-05407-5", 
      "https://app.dimensions.ai/details/publication/pub.1144707647"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_957.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11051-022-05407-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11051-022-05407-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11051-022-05407-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11051-022-05407-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11051-022-05407-5'


 

This table displays all metadata directly associated to this object as RDF triples.

176 TRIPLES      21 PREDICATES      72 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11051-022-05407-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 anzsrc-for:10
4 anzsrc-for:1007
5 schema:author N3af56382a3d94e2b9366298691c3d905
6 schema:citation sg:pub.10.1007/bf01117947
7 sg:pub.10.1007/bf01290392
8 sg:pub.10.1007/s11051-011-0329-8
9 sg:pub.10.1038/nmat1513
10 sg:pub.10.1134/s1063774510050275
11 schema:datePublished 2022-01-15
12 schema:datePublishedReg 2022-01-15
13 schema:description This study is devoted to creating media for the accumulation of electrical energy based on zirconia nanoparticles. The effect of charge accumulation by compacted zirconia nanoparticles, the manifestation of which depends on the size of the particles and the degree of hydration of their surface, was found. It is shown that for the system of hydrated nanoparticles, the formation of the dielectric constant of the entire structure as a whole is influenced by the dielectric properties of the nanoparticle materials and water on its surface. The difference in the dielectric properties of the filler (water) and the matrix (material of zirconia nanoparticles) leads to a strong increase in the dielectric constant of hydrated compacted nanoparticles due to the Maxwell–Wagner effect, which is a promising application in the development of energy storage media.Graphical abstract
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N780dc20905e1435ea19efc76d1331691
17 N8eb07387cef3485bb8cf03efef9951ca
18 sg:journal.1028317
19 schema:keywords Maxwell-Wagner effect
20 accumulation
21 applications
22 charge accumulation
23 compacted nanoparticles
24 degree
25 degree of hydration
26 development
27 dielectric
28 dielectric properties
29 differences
30 effect
31 electrical charge accumulation
32 electrical energy
33 energy
34 energy storage medium
35 entire structure
36 filler
37 formation
38 hydrated nanoparticles
39 hydration
40 increase
41 manifestations
42 materials
43 matrix
44 medium
45 nanoparticle materials
46 nanoparticles
47 particles
48 promising applications
49 properties
50 size
51 storage media
52 strong increase
53 structure
54 study
55 surface
56 system
57 water
58 whole
59 zirconia nanoparticles
60 schema:name Hydrated zirconia nanoparticles as media for electrical charge accumulation
61 schema:pagination 18
62 schema:productId N0af622ce8ac14b6b8b0e399ed910b65a
63 Nf3feee1ce85c485db810498f40f444ac
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1144707647
65 https://doi.org/10.1007/s11051-022-05407-5
66 schema:sdDatePublished 2022-12-01T06:45
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Ndcfb9dd5fe144072980ec0d964732bf2
69 schema:url https://doi.org/10.1007/s11051-022-05407-5
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0af622ce8ac14b6b8b0e399ed910b65a schema:name doi
74 schema:value 10.1007/s11051-022-05407-5
75 rdf:type schema:PropertyValue
76 N1862bb2fe0704eb2a2bf7c24a6b92b47 rdf:first sg:person.010504542113.20
77 rdf:rest Nb940d68cc2df441398fcfd579cb18301
78 N3af56382a3d94e2b9366298691c3d905 rdf:first sg:person.011111325312.39
79 rdf:rest N43ab2c98077b4af283b8f1fbf8573767
80 N43ab2c98077b4af283b8f1fbf8573767 rdf:first sg:person.0732652645.16
81 rdf:rest N8ed907d456be41c5890a8e7374554cc5
82 N5c91ef07fbea4ed992e6518f0cfb4688 rdf:first sg:person.016040157763.41
83 rdf:rest rdf:nil
84 N780dc20905e1435ea19efc76d1331691 schema:issueNumber 1
85 rdf:type schema:PublicationIssue
86 N8eb07387cef3485bb8cf03efef9951ca schema:volumeNumber 24
87 rdf:type schema:PublicationVolume
88 N8ed907d456be41c5890a8e7374554cc5 rdf:first sg:person.011756271301.56
89 rdf:rest N1862bb2fe0704eb2a2bf7c24a6b92b47
90 Nb940d68cc2df441398fcfd579cb18301 rdf:first sg:person.014470625437.62
91 rdf:rest Ndf5e17fe1cf1426e8b74be7e91593324
92 Ndcfb9dd5fe144072980ec0d964732bf2 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 Ndf5e17fe1cf1426e8b74be7e91593324 rdf:first sg:person.01000766045.21
95 rdf:rest N5c91ef07fbea4ed992e6518f0cfb4688
96 Nf3feee1ce85c485db810498f40f444ac schema:name dimensions_id
97 schema:value pub.1144707647
98 rdf:type schema:PropertyValue
99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
100 schema:name Engineering
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
103 schema:name Materials Engineering
104 rdf:type schema:DefinedTerm
105 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
106 schema:name Technology
107 rdf:type schema:DefinedTerm
108 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
109 schema:name Nanotechnology
110 rdf:type schema:DefinedTerm
111 sg:journal.1028317 schema:issn 1388-0764
112 1572-896X
113 schema:name Journal of Nanoparticle Research
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.01000766045.21 schema:affiliation grid-institutes:grid.418751.e
117 schema:familyName Konstantinova
118 schema:givenName Tetyana
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000766045.21
120 rdf:type schema:Person
121 sg:person.010504542113.20 schema:affiliation grid-institutes:grid.33762.33
122 schema:familyName Doroshkevich
123 schema:givenName Oleksandr
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010504542113.20
125 rdf:type schema:Person
126 sg:person.011111325312.39 schema:affiliation grid-institutes:grid.418751.e
127 schema:familyName Shylo
128 schema:givenName Artem
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011111325312.39
130 rdf:type schema:Person
131 sg:person.011756271301.56 schema:affiliation grid-institutes:grid.418751.e
132 schema:familyName Gorban
133 schema:givenName Oksana
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011756271301.56
135 rdf:type schema:Person
136 sg:person.014470625437.62 schema:affiliation grid-institutes:grid.418751.e
137 schema:familyName Nosolev
138 schema:givenName Igor
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014470625437.62
140 rdf:type schema:Person
141 sg:person.016040157763.41 schema:affiliation grid-institutes:grid.164242.7
142 schema:familyName Lyubchyk
143 schema:givenName Andriy
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016040157763.41
145 rdf:type schema:Person
146 sg:person.0732652645.16 schema:affiliation grid-institutes:grid.418751.e
147 schema:familyName Danilenko
148 schema:givenName Igor
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732652645.16
150 rdf:type schema:Person
151 sg:pub.10.1007/bf01117947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010031656
152 https://doi.org/10.1007/bf01117947
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf01290392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018114686
155 https://doi.org/10.1007/bf01290392
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s11051-011-0329-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025424151
158 https://doi.org/10.1007/s11051-011-0329-8
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nmat1513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016982782
161 https://doi.org/10.1038/nmat1513
162 rdf:type schema:CreativeWork
163 sg:pub.10.1134/s1063774510050275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053528665
164 https://doi.org/10.1134/s1063774510050275
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.164242.7 schema:alternateName Lusófona University, Lisbon, Portugal
167 schema:name Lusófona University, Lisbon, Portugal
168 NANOTECHCENTER, Kyiv, Ukraine
169 rdf:type schema:Organization
170 grid-institutes:grid.33762.33 schema:alternateName Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
171 schema:name Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
172 Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine
173 rdf:type schema:Organization
174 grid-institutes:grid.418751.e schema:alternateName Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine
175 schema:name Materials Science Department, Donetsk Institute for Physics and Engineering named after O.O. Galkin of NAS of Ukraine, Kyiv, Ukraine
176 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...