Charge transference and conformational stress influence on the electronic properties of zigzag carbon nanowires View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

A. Tapia, C. Cab, M. L. Casais-Molina, J. Medina, T. Cu, G. Canto

ABSTRACT

The structural and electronic properties of nanostructures resulting from the insertion of a linear carbon chain (LCC) into a semiconducting zigzag single-walled carbon nanotubes (SWCNTs) were studied using density functional theory. Although all isolated constituents exhibited a semiconductor behavior, semiconductor transitions to metallic character were found in the combined system. The competitive effects on the band gap due to the conformational stress and charge transfer were analyzed, both resulting in an overall metallic character. The electronic character in nanowires with (7,0) nanotube is affected by structural strain and charge transfer with a slightly higher influence of the charge transferred. Nanowires with (8,0) nanotube and bigger are mainly affected by strain, and their electronic states distribution retains the energy gap associated with isolated semiconducting nanotube with only a few empty states slightly above the Fermi level due to the charge transfer to LCC. A metallic behavior was found for all nanowires. However, a metallization dependence with nanotube diameters was found. LCC shows a metallic contribution in all cases. This study suggests that strain could produce nanostructures with a global metallic behavior which is provided by a metallic LCC plus a semiconducting nanotube for sizes as small as 6.5 Å. Zigzag nanowires smaller than this last value produce strained LCC accompanied by a transition from semiconductor to metal on both subsystems. More... »

PAGES

46

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11051-019-4492-7

DOI

http://dx.doi.org/10.1007/s11051-019-4492-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112465215


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Autonomous University of Yucat\u00e1n", 
          "id": "https://www.grid.ac/institutes/grid.412864.d", 
          "name": [
            "Facultad de Ingenier\u00eda, Universidad Aut\u00f3noma de Yucat\u00e1n, Av. Industrias no Contaminantes, Perif\u00e9rico Norte, Cordemex, A.P. 150, 97310, M\u00e9rida, Yucat\u00e1n, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tapia", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Yucat\u00e1n", 
          "id": "https://www.grid.ac/institutes/grid.412864.d", 
          "name": [
            "Facultad de Ingenier\u00eda, Universidad Aut\u00f3noma de Yucat\u00e1n, Av. Industrias no Contaminantes, Perif\u00e9rico Norte, Cordemex, A.P. 150, 97310, M\u00e9rida, Yucat\u00e1n, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cab", 
        "givenName": "C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Yucat\u00e1n", 
          "id": "https://www.grid.ac/institutes/grid.412864.d", 
          "name": [
            "Facultad de Ingenier\u00eda, Universidad Aut\u00f3noma de Yucat\u00e1n, Av. Industrias no Contaminantes, Perif\u00e9rico Norte, Cordemex, A.P. 150, 97310, M\u00e9rida, Yucat\u00e1n, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Casais-Molina", 
        "givenName": "M. L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Yucat\u00e1n", 
          "id": "https://www.grid.ac/institutes/grid.412864.d", 
          "name": [
            "Facultad de Ingenier\u00eda, Universidad Aut\u00f3noma de Yucat\u00e1n, Av. Industrias no Contaminantes, Perif\u00e9rico Norte, Cordemex, A.P. 150, 97310, M\u00e9rida, Yucat\u00e1n, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Medina", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Yucat\u00e1n", 
          "id": "https://www.grid.ac/institutes/grid.412864.d", 
          "name": [
            "Facultad de Ingenier\u00eda, Universidad Aut\u00f3noma de Yucat\u00e1n, Av. Industrias no Contaminantes, Perif\u00e9rico Norte, Cordemex, A.P. 150, 97310, M\u00e9rida, Yucat\u00e1n, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cu", 
        "givenName": "T.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Campeche", 
          "id": "https://www.grid.ac/institutes/grid.412854.e", 
          "name": [
            "Centro de Investigaci\u00f3n en Corrosi\u00f3n, Universidad Aut\u00f3noma de Campeche, Av. Agust\u00edn Melgar s/n, Col. Buenavista, San Francisco de Campeche, 24039, Campeche, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Canto", 
        "givenName": "G.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.carbon.2005.08.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003606150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-011-0132-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006846584", 
          "https://doi.org/10.1007/s12274-011-0132-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009632285", 
          "https://doi.org/10.1038/nmat4617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/14/11/302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013140491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/354056a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016485857", 
          "https://doi.org/10.1038/354056a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.05.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018305235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.05.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018305235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.05.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018305235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2016.05.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018305235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1899769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022802801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(03)01132-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023215204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(03)01132-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023215204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/318162a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024648559", 
          "https://doi.org/10.1038/318162a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cap.2015.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026286730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2007.11.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026488121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268977000101561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031262511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2010.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034529470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5nr06175j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041215688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.096102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047581058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.096102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047581058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/16/29/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050271381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.246401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052519808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.246401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052519808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp063706+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056067076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp063706+", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056067076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp201647m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056082286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp201647m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056082286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3517789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057966399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.136.b864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.136.b864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.13.5188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.1993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.r2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060596602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.r2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060596602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.155420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.155420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.48.1425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.48.1425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060787087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.187401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.187401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.155419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092144597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.155419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092144597"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "The structural and electronic properties of nanostructures resulting from the insertion of a linear carbon chain (LCC) into a semiconducting zigzag single-walled carbon nanotubes (SWCNTs) were studied using density functional theory. Although all isolated constituents exhibited a semiconductor behavior, semiconductor transitions to metallic character were found in the combined system. The competitive effects on the band gap due to the conformational stress and charge transfer were analyzed, both resulting in an overall metallic character. The electronic character in nanowires with (7,0) nanotube is affected by structural strain and charge transfer with a slightly higher influence of the charge transferred. Nanowires with (8,0) nanotube and bigger are mainly affected by strain, and their electronic states distribution retains the energy gap associated with isolated semiconducting nanotube with only a few empty states slightly above the Fermi level due to the charge transfer to LCC. A metallic behavior was found for all nanowires. However, a metallization dependence with nanotube diameters was found. LCC shows a metallic contribution in all cases. This study suggests that strain could produce nanostructures with a global metallic behavior which is provided by a metallic LCC plus a semiconducting nanotube for sizes as small as 6.5 \u00c5. Zigzag nanowires smaller than this last value produce strained LCC accompanied by a transition from semiconductor to metal on both subsystems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11051-019-4492-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028317", 
        "issn": [
          "1388-0764", 
          "1572-896X"
        ], 
        "name": "Journal of Nanoparticle Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Charge transference and conformational stress influence on the electronic properties of zigzag carbon nanowires", 
    "pagination": "46", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ec76a65e03ae4ccf15e0c7a525d72274f64cf68d9ae264d29787cc96de039a5d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11051-019-4492-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112465215"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11051-019-4492-7", 
      "https://app.dimensions.ai/details/publication/pub.1112465215"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117087_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11051-019-4492-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11051-019-4492-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11051-019-4492-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11051-019-4492-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11051-019-4492-7'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11051-019-4492-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6d21e74735f74091a6cd88474cc2f183
4 schema:citation sg:pub.10.1007/s12274-011-0132-y
5 sg:pub.10.1038/318162a0
6 sg:pub.10.1038/354056a0
7 sg:pub.10.1038/nmat4617
8 https://doi.org/10.1016/j.cap.2015.01.008
9 https://doi.org/10.1016/j.carbon.2005.08.026
10 https://doi.org/10.1016/j.carbon.2007.11.043
11 https://doi.org/10.1016/j.carbon.2010.07.011
12 https://doi.org/10.1016/j.carbon.2016.05.069
13 https://doi.org/10.1016/s0375-9601(03)01132-0
14 https://doi.org/10.1021/jp063706+
15 https://doi.org/10.1021/jp201647m
16 https://doi.org/10.1039/c5nr06175j
17 https://doi.org/10.1063/1.1899769
18 https://doi.org/10.1063/1.3517789
19 https://doi.org/10.1080/00268977000101561
20 https://doi.org/10.1088/0953-8984/14/11/302
21 https://doi.org/10.1088/0953-8984/16/29/r01
22 https://doi.org/10.1103/physrev.136.b864
23 https://doi.org/10.1103/physrevb.13.5188
24 https://doi.org/10.1103/physrevb.43.1993
25 https://doi.org/10.1103/physrevb.61.r2472
26 https://doi.org/10.1103/physrevb.72.155420
27 https://doi.org/10.1103/physrevb.96.155419
28 https://doi.org/10.1103/physrevlett.103.096102
29 https://doi.org/10.1103/physrevlett.48.1425
30 https://doi.org/10.1103/physrevlett.90.187401
31 https://doi.org/10.1103/physrevlett.92.246401
32 https://doi.org/10.1126/science.1102896
33 schema:datePublished 2019-03
34 schema:datePublishedReg 2019-03-01
35 schema:description The structural and electronic properties of nanostructures resulting from the insertion of a linear carbon chain (LCC) into a semiconducting zigzag single-walled carbon nanotubes (SWCNTs) were studied using density functional theory. Although all isolated constituents exhibited a semiconductor behavior, semiconductor transitions to metallic character were found in the combined system. The competitive effects on the band gap due to the conformational stress and charge transfer were analyzed, both resulting in an overall metallic character. The electronic character in nanowires with (7,0) nanotube is affected by structural strain and charge transfer with a slightly higher influence of the charge transferred. Nanowires with (8,0) nanotube and bigger are mainly affected by strain, and their electronic states distribution retains the energy gap associated with isolated semiconducting nanotube with only a few empty states slightly above the Fermi level due to the charge transfer to LCC. A metallic behavior was found for all nanowires. However, a metallization dependence with nanotube diameters was found. LCC shows a metallic contribution in all cases. This study suggests that strain could produce nanostructures with a global metallic behavior which is provided by a metallic LCC plus a semiconducting nanotube for sizes as small as 6.5 Å. Zigzag nanowires smaller than this last value produce strained LCC accompanied by a transition from semiconductor to metal on both subsystems.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N491034262c694543bc45f2e8aa4bc759
40 Ne0ca210e625345ec9a045c435626988c
41 sg:journal.1028317
42 schema:name Charge transference and conformational stress influence on the electronic properties of zigzag carbon nanowires
43 schema:pagination 46
44 schema:productId N0dc84d8001b84e8b857d56ea5872aa8f
45 N1ec91a7ac6ae46c5ad115e56e62c82ae
46 Nf13ed6ec564c4bb083a1b6ae888b786d
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112465215
48 https://doi.org/10.1007/s11051-019-4492-7
49 schema:sdDatePublished 2019-04-11T14:16
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N9137480534eb46f18a515f7f4c5a57fb
52 schema:url https://link.springer.com/10.1007%2Fs11051-019-4492-7
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0dc84d8001b84e8b857d56ea5872aa8f schema:name readcube_id
57 schema:value ec76a65e03ae4ccf15e0c7a525d72274f64cf68d9ae264d29787cc96de039a5d
58 rdf:type schema:PropertyValue
59 N1ec91a7ac6ae46c5ad115e56e62c82ae schema:name dimensions_id
60 schema:value pub.1112465215
61 rdf:type schema:PropertyValue
62 N228340e1c7ea484a881fef4bc3eec35d rdf:first N9547ee8738de4b3f98b9883485a64a12
63 rdf:rest Ncc1e149dd0f740c5a363b10804d3e63a
64 N491034262c694543bc45f2e8aa4bc759 schema:issueNumber 3
65 rdf:type schema:PublicationIssue
66 N4bf6d5d2aa524e84beddebf6d3e222a5 schema:affiliation https://www.grid.ac/institutes/grid.412864.d
67 schema:familyName Tapia
68 schema:givenName A.
69 rdf:type schema:Person
70 N5b2d3af665a44cb6a2be417351d04345 rdf:first Nb1cf80ddef414d5c9e25f0d1349d1903
71 rdf:rest N228340e1c7ea484a881fef4bc3eec35d
72 N6d21e74735f74091a6cd88474cc2f183 rdf:first N4bf6d5d2aa524e84beddebf6d3e222a5
73 rdf:rest N9c6f2a88f4fe4cca85648980fd0ff299
74 N7c5239ccaa9d4e549f4e1136ad0cf984 schema:affiliation https://www.grid.ac/institutes/grid.412854.e
75 schema:familyName Canto
76 schema:givenName G.
77 rdf:type schema:Person
78 N9137480534eb46f18a515f7f4c5a57fb schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N9547ee8738de4b3f98b9883485a64a12 schema:affiliation https://www.grid.ac/institutes/grid.412864.d
81 schema:familyName Cu
82 schema:givenName T.
83 rdf:type schema:Person
84 N9c6f2a88f4fe4cca85648980fd0ff299 rdf:first Nbfe44c848f2746d7a187ebe3cfac8db5
85 rdf:rest Nc0f2d7ceb35346cc98569dba9e4ee11f
86 Nb1cf80ddef414d5c9e25f0d1349d1903 schema:affiliation https://www.grid.ac/institutes/grid.412864.d
87 schema:familyName Medina
88 schema:givenName J.
89 rdf:type schema:Person
90 Nbfe44c848f2746d7a187ebe3cfac8db5 schema:affiliation https://www.grid.ac/institutes/grid.412864.d
91 schema:familyName Cab
92 schema:givenName C.
93 rdf:type schema:Person
94 Nc0f2d7ceb35346cc98569dba9e4ee11f rdf:first Nec9b7ac8761d4d6e844d341181ebc52c
95 rdf:rest N5b2d3af665a44cb6a2be417351d04345
96 Ncc1e149dd0f740c5a363b10804d3e63a rdf:first N7c5239ccaa9d4e549f4e1136ad0cf984
97 rdf:rest rdf:nil
98 Ne0ca210e625345ec9a045c435626988c schema:volumeNumber 21
99 rdf:type schema:PublicationVolume
100 Nec9b7ac8761d4d6e844d341181ebc52c schema:affiliation https://www.grid.ac/institutes/grid.412864.d
101 schema:familyName Casais-Molina
102 schema:givenName M. L.
103 rdf:type schema:Person
104 Nf13ed6ec564c4bb083a1b6ae888b786d schema:name doi
105 schema:value 10.1007/s11051-019-4492-7
106 rdf:type schema:PropertyValue
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
111 schema:name Materials Engineering
112 rdf:type schema:DefinedTerm
113 sg:journal.1028317 schema:issn 1388-0764
114 1572-896X
115 schema:name Journal of Nanoparticle Research
116 rdf:type schema:Periodical
117 sg:pub.10.1007/s12274-011-0132-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1006846584
118 https://doi.org/10.1007/s12274-011-0132-y
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/318162a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024648559
121 https://doi.org/10.1038/318162a0
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/354056a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016485857
124 https://doi.org/10.1038/354056a0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nmat4617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009632285
127 https://doi.org/10.1038/nmat4617
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.cap.2015.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026286730
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.carbon.2005.08.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003606150
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.carbon.2007.11.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026488121
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.carbon.2010.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034529470
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.carbon.2016.05.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018305235
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/s0375-9601(03)01132-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023215204
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/jp063706+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1056067076
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/jp201647m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056082286
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1039/c5nr06175j schema:sameAs https://app.dimensions.ai/details/publication/pub.1041215688
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.1899769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022802801
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.3517789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057966399
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/00268977000101561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031262511
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1088/0953-8984/14/11/302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013140491
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1088/0953-8984/16/29/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050271381
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrev.136.b864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060429813
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.13.5188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521190
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.43.1993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060557212
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevb.61.r2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060596602
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevb.72.155420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060615466
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevb.96.155419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092144597
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.103.096102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047581058
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.48.1425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060787087
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.90.187401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826688
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.92.246401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052519808
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.412854.e schema:alternateName Autonomous University of Campeche
180 schema:name Centro de Investigación en Corrosión, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, San Francisco de Campeche, 24039, Campeche, Mexico
181 rdf:type schema:Organization
182 https://www.grid.ac/institutes/grid.412864.d schema:alternateName Autonomous University of Yucatán
183 schema:name Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias no Contaminantes, Periférico Norte, Cordemex, A.P. 150, 97310, Mérida, Yucatán, Mexico
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...