Growth of semi-coherent Ni and NiO dual-phase nanoparticles using hollow cathode sputtering View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Sebastian Ekeroth, Shuga Ikeda, Robert D. Boyd, Tetsuhide Shimizu, Ulf Helmersson

ABSTRACT

Anisotropic heterogenous Ni/NiO nanoparticles with controlled compositions are grown using a high-power pulsed hollow cathode process. These novel particles can be tuned to consist of single-phase Ni via two-phase Ni/NiO to fully oxidized NiO, with a size range of 5–25 nm for individual crystals. A novelty of this approach is the ability to assemble multiple particles of Ni and NiO into a single complex structure, increasing the Ni-NiO interface density. This type of particle growth is not seen before and is explained to be due to the fact that the process operates in a single-step approach, where both Ni and O can arrive at the formed nanoparticle nuclei and aid in the continuous particle growth. The finished particle will then be a consequence of the initially formed crystal, as well as the arrival rate ratio of the two species. These particles hold great potential for applications in fields, such as electro- and photocatalysis, where the ability to control the level of oxidation and/or interface density is of great importance. Graphical abstract Graphical abstract More... »

PAGES

37

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11051-019-4479-4

DOI

http://dx.doi.org/10.1007/s11051-019-4479-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112113145


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Department of Physics, Chemistry and Biology, Linkopings Universitet, 58183, Link\u00f6ping, \u00d6sterg\u00f6tland, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ekeroth", 
        "givenName": "Sebastian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University", 
          "id": "https://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Department of Intelligent Mechanical Systems, Tokyo Metropolitan University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ikeda", 
        "givenName": "Shuga", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Department of Physics, Chemistry and Biology, Linkopings Universitet, 58183, Link\u00f6ping, \u00d6sterg\u00f6tland, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boyd", 
        "givenName": "Robert D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University", 
          "id": "https://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Department of Intelligent Mechanical Systems, Tokyo Metropolitan University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shimizu", 
        "givenName": "Tetsuhide", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Link\u00f6ping University", 
          "id": "https://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Department of Physics, Chemistry and Biology, Linkopings Universitet, 58183, Link\u00f6ping, \u00d6sterg\u00f6tland, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Helmersson", 
        "givenName": "Ulf", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.susc.2007.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001151264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1211934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001257081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-9-444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002363627", 
          "https://doi.org/10.1186/1556-276x-9-444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/26/40/405704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008827817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mssp.2013.05.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014360593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0364-5916(95)00024-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019081552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019300299", 
          "https://doi.org/10.1038/ncomms7430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0963-0252/22/3/035006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020889178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-4332(90)90004-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025364956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02646220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028267457", 
          "https://doi.org/10.1007/bf02646220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02646220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028267457", 
          "https://doi.org/10.1007/bf02646220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/24/37/375602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031850648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-6028(96)00883-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032214697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(80)90710-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039531428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(80)90710-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039531428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2015.09.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043435826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apt.2009.10.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044163357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051699857", 
          "https://doi.org/10.1038/ncomms5695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053618230", 
          "https://doi.org/10.1038/ncomms13638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3310420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057934970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4788739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058068227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.6340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.6340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.3.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060534944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.3.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060534944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.582292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062192339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/91/63001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/91/63001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.6b15377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083685946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2017.09.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092225698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-17899-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099696450", 
          "https://doi.org/10.1038/s41598-017-17899-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7cp08112j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101141761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.8b00718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103266107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6463/aae117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106972635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6463/aae117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106972635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471724254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471724254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c9ta00020h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111757366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c9ta00020h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111757366"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Anisotropic heterogenous Ni/NiO nanoparticles with controlled compositions are grown using a high-power pulsed hollow cathode process. These novel particles can be tuned to consist of single-phase Ni via two-phase Ni/NiO to fully oxidized NiO, with a size range of 5\u201325 nm for individual crystals. A novelty of this approach is the ability to assemble multiple particles of Ni and NiO into a single complex structure, increasing the Ni-NiO interface density. This type of particle growth is not seen before and is explained to be due to the fact that the process operates in a single-step approach, where both Ni and O can arrive at the formed nanoparticle nuclei and aid in the continuous particle growth. The finished particle will then be a consequence of the initially formed crystal, as well as the arrival rate ratio of the two species. These particles hold great potential for applications in fields, such as electro- and photocatalysis, where the ability to control the level of oxidation and/or interface density is of great importance. Graphical abstract Graphical abstract", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11051-019-4479-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028317", 
        "issn": [
          "1388-0764", 
          "1572-896X"
        ], 
        "name": "Journal of Nanoparticle Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "name": "Growth of semi-coherent Ni and NiO dual-phase nanoparticles using hollow cathode sputtering", 
    "pagination": "37", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "99b89292291572e2a36dddcf02ac7e59be62ab0a32365ab78280ed7e6c6c4e3c"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11051-019-4479-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112113145"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11051-019-4479-4", 
      "https://app.dimensions.ai/details/publication/pub.1112113145"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70037_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11051-019-4479-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11051-019-4479-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11051-019-4479-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11051-019-4479-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11051-019-4479-4'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11051-019-4479-4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N8f770e59c8e64fe484cba011e0754b1e
4 schema:citation sg:pub.10.1007/bf02646220
5 sg:pub.10.1038/ncomms13638
6 sg:pub.10.1038/ncomms5695
7 sg:pub.10.1038/ncomms7430
8 sg:pub.10.1038/s41598-017-17899-6
9 sg:pub.10.1186/1556-276x-9-444
10 https://doi.org/10.1002/0471724254
11 https://doi.org/10.1016/0039-6028(80)90710-4
12 https://doi.org/10.1016/0169-4332(90)90004-j
13 https://doi.org/10.1016/0364-5916(95)00024-9
14 https://doi.org/10.1016/j.apt.2009.10.012
15 https://doi.org/10.1016/j.ijhydene.2017.09.108
16 https://doi.org/10.1016/j.mssp.2013.05.018
17 https://doi.org/10.1016/j.nanoen.2015.09.013
18 https://doi.org/10.1016/j.susc.2007.12.003
19 https://doi.org/10.1016/s0039-6028(96)00883-7
20 https://doi.org/10.1021/acs.nanolett.8b00718
21 https://doi.org/10.1021/acsami.6b15377
22 https://doi.org/10.1039/c7cp08112j
23 https://doi.org/10.1039/c9ta00020h
24 https://doi.org/10.1063/1.3310420
25 https://doi.org/10.1063/1.4788739
26 https://doi.org/10.1088/0957-4484/24/37/375602
27 https://doi.org/10.1088/0957-4484/26/40/405704
28 https://doi.org/10.1088/0963-0252/22/3/035006
29 https://doi.org/10.1088/1361-6463/aae117
30 https://doi.org/10.1103/physrevb.23.6340
31 https://doi.org/10.1103/physrevb.3.1039
32 https://doi.org/10.1116/1.582292
33 https://doi.org/10.1126/science.1211934
34 https://doi.org/10.1209/0295-5075/91/63001
35 schema:datePublished 2019-02
36 schema:datePublishedReg 2019-02-01
37 schema:description Anisotropic heterogenous Ni/NiO nanoparticles with controlled compositions are grown using a high-power pulsed hollow cathode process. These novel particles can be tuned to consist of single-phase Ni via two-phase Ni/NiO to fully oxidized NiO, with a size range of 5–25 nm for individual crystals. A novelty of this approach is the ability to assemble multiple particles of Ni and NiO into a single complex structure, increasing the Ni-NiO interface density. This type of particle growth is not seen before and is explained to be due to the fact that the process operates in a single-step approach, where both Ni and O can arrive at the formed nanoparticle nuclei and aid in the continuous particle growth. The finished particle will then be a consequence of the initially formed crystal, as well as the arrival rate ratio of the two species. These particles hold great potential for applications in fields, such as electro- and photocatalysis, where the ability to control the level of oxidation and/or interface density is of great importance. Graphical abstract Graphical abstract
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N127f4af00e7c41f4a25202b9306e58d1
42 N974653efea7b4b6598e9d8557961ba96
43 sg:journal.1028317
44 schema:name Growth of semi-coherent Ni and NiO dual-phase nanoparticles using hollow cathode sputtering
45 schema:pagination 37
46 schema:productId N6b4286a839af40a8bf4d00d345e92474
47 N6e4af359d242459ba04b7b1a41155d7a
48 Nfdb5ad754f05475c8ef8105919e888b0
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112113145
50 https://doi.org/10.1007/s11051-019-4479-4
51 schema:sdDatePublished 2019-04-11T12:38
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nf7d68d9007ce4b23b6ed03f67acb4a15
54 schema:url https://link.springer.com/10.1007%2Fs11051-019-4479-4
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N127f4af00e7c41f4a25202b9306e58d1 schema:volumeNumber 21
59 rdf:type schema:PublicationVolume
60 N1ee8443b502b43ab84d545b34dc5ad31 schema:affiliation https://www.grid.ac/institutes/grid.265074.2
61 schema:familyName Ikeda
62 schema:givenName Shuga
63 rdf:type schema:Person
64 N2a0a415b69494ffcabe7c1d5b4461353 rdf:first N1ee8443b502b43ab84d545b34dc5ad31
65 rdf:rest N69665be908a1422da5e534fee544f968
66 N64bb2ed8ced5442eacb917cddfc50518 schema:affiliation https://www.grid.ac/institutes/grid.5640.7
67 schema:familyName Boyd
68 schema:givenName Robert D.
69 rdf:type schema:Person
70 N69665be908a1422da5e534fee544f968 rdf:first N64bb2ed8ced5442eacb917cddfc50518
71 rdf:rest N87ea789579ef4efcb98ce50e73e65a15
72 N6b4286a839af40a8bf4d00d345e92474 schema:name readcube_id
73 schema:value 99b89292291572e2a36dddcf02ac7e59be62ab0a32365ab78280ed7e6c6c4e3c
74 rdf:type schema:PropertyValue
75 N6e4af359d242459ba04b7b1a41155d7a schema:name doi
76 schema:value 10.1007/s11051-019-4479-4
77 rdf:type schema:PropertyValue
78 N87ea789579ef4efcb98ce50e73e65a15 rdf:first Na23df294f3a94ada8272e657e3295d04
79 rdf:rest Nbe444f6e151e4071a9eda0cb34916ed2
80 N8f770e59c8e64fe484cba011e0754b1e rdf:first N9ee9b54cbf264c699afd7b7f7e564c1e
81 rdf:rest N2a0a415b69494ffcabe7c1d5b4461353
82 N974653efea7b4b6598e9d8557961ba96 schema:issueNumber 2
83 rdf:type schema:PublicationIssue
84 N9ee9b54cbf264c699afd7b7f7e564c1e schema:affiliation https://www.grid.ac/institutes/grid.5640.7
85 schema:familyName Ekeroth
86 schema:givenName Sebastian
87 rdf:type schema:Person
88 Na23df294f3a94ada8272e657e3295d04 schema:affiliation https://www.grid.ac/institutes/grid.265074.2
89 schema:familyName Shimizu
90 schema:givenName Tetsuhide
91 rdf:type schema:Person
92 Nbe444f6e151e4071a9eda0cb34916ed2 rdf:first Nd5cc12cc9bb24b928871299f4af940fc
93 rdf:rest rdf:nil
94 Nd5cc12cc9bb24b928871299f4af940fc schema:affiliation https://www.grid.ac/institutes/grid.5640.7
95 schema:familyName Helmersson
96 schema:givenName Ulf
97 rdf:type schema:Person
98 Nf7d68d9007ce4b23b6ed03f67acb4a15 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 Nfdb5ad754f05475c8ef8105919e888b0 schema:name dimensions_id
101 schema:value pub.1112113145
102 rdf:type schema:PropertyValue
103 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
104 schema:name Chemical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Chemistry (incl. Structural)
108 rdf:type schema:DefinedTerm
109 sg:journal.1028317 schema:issn 1388-0764
110 1572-896X
111 schema:name Journal of Nanoparticle Research
112 rdf:type schema:Periodical
113 sg:pub.10.1007/bf02646220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028267457
114 https://doi.org/10.1007/bf02646220
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/ncomms13638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053618230
117 https://doi.org/10.1038/ncomms13638
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/ncomms5695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051699857
120 https://doi.org/10.1038/ncomms5695
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/ncomms7430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019300299
123 https://doi.org/10.1038/ncomms7430
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/s41598-017-17899-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099696450
126 https://doi.org/10.1038/s41598-017-17899-6
127 rdf:type schema:CreativeWork
128 sg:pub.10.1186/1556-276x-9-444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002363627
129 https://doi.org/10.1186/1556-276x-9-444
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/0471724254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109700912
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0039-6028(80)90710-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039531428
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0169-4332(90)90004-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1025364956
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0364-5916(95)00024-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019081552
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.apt.2009.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044163357
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.ijhydene.2017.09.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092225698
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.mssp.2013.05.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014360593
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.nanoen.2015.09.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043435826
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.susc.2007.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001151264
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/s0039-6028(96)00883-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032214697
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1021/acs.nanolett.8b00718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103266107
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/acsami.6b15377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083685946
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1039/c7cp08112j schema:sameAs https://app.dimensions.ai/details/publication/pub.1101141761
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1039/c9ta00020h schema:sameAs https://app.dimensions.ai/details/publication/pub.1111757366
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.3310420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057934970
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.4788739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058068227
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/0957-4484/24/37/375602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031850648
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1088/0957-4484/26/40/405704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008827817
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/0963-0252/22/3/035006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020889178
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/1361-6463/aae117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106972635
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevb.23.6340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060529009
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevb.3.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060534944
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1116/1.582292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062192339
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1211934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001257081
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1209/0295-5075/91/63001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064233270
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.265074.2 schema:alternateName Tokyo Metropolitan University
182 schema:name Department of Intelligent Mechanical Systems, Tokyo Metropolitan University, Tokyo, Japan
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.5640.7 schema:alternateName Linköping University
185 schema:name Department of Physics, Chemistry and Biology, Linkopings Universitet, 58183, Linköping, Östergötland, Sweden
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...