Fe-containing nanoparticles used as effective catalysts of lignin reforming to syngas and hydrogen assisted by microwave irradiation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-03

AUTHORS

M. V. Tsodikov, O. G. Ellert, S. A. Nikolaev, O. V. Arapova, O. V. Bukhtenko, Yu. V. Maksimov, D. I. Kirdyankin, A. Yu. Vasil’kov

ABSTRACT

Active iron-containing nanosized components have been formed on the lignin surface. The metal was deposited on the lignin from an ethanol solution of Fe(acac)3 and from a colloid solution of iron metal particles obtained beforehand by metal vapor synthesis. These active components are able to absorb microwave radiation and are suitable for microwave-assisted high-rate dehydrogenation and dry reforming of lignin without addition of a carbon adsorbent, as a supplementary radiation absorbing material, to the feedstock. The dependence of the solid lignin heating dynamics on the concentration of supported iron particles was investigated. The threshold Fe concentration equal to 0.5 wt.%, providing the highest rate of sample heating up to the reforming and plasma generation temperature was identified. The microstructure and magnetic properties of iron-containing nanoparticles supported on lignin were studied before and after the reforming. The Fe3O4 nanoparticles and also core-shell Fe3O4@γ-Fe-С nanostructures are formed during the reforming of lignin samples. The catalytic performance of iron-based nanoparticles toward the lignin conversion is manifested as increasing selectivity to hydrogen and syngas, which reaches 94% at the Fe concentration of 2 wt.%. It was found that with microwave irradiation under argon, hydrogen predominates in the gas. In the СО2 atmosphere, dry reforming takes place to give syngas with the СО/Н2 ratio of ~ 0.9. In both cases, the degree of hydrogen recovery from lignin reaches 90–94%. Graphical abstractThe microwave-supported deposition of iron on the lignin surface gives active well defined nanoparticles Fe3O4 and also core-shell Fe3O4@γ-Fe-С nanostructures. These nanocomponents provide for high-rate microwave-assisted dehydrogenation and dry reforming of lignin. The microwave-supported deposition of iron on the lignin surface gives active well defined nanoparticles Fe3O4 and also core-shell Fe3O4@γ-Fe-С nanostructures. These nanocomponents provide for high-rate microwave-assisted dehydrogenation and dry reforming of lignin. More... »

PAGES

86

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11051-018-4185-7

DOI

http://dx.doi.org/10.1007/s11051-018-4185-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101699725


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "A.V. Topchiev Institute of Petrochemical Synthesis of the RAS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsodikov", 
        "givenName": "M. V.", 
        "id": "sg:person.015045563603.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045563603.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NS Kurnakova Institute of General and Inorganic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435216.7", 
          "name": [
            "N.S. Kurnakov Institute of General and Inorganic Chemistry of the RAS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ellert", 
        "givenName": "O. G.", 
        "id": "sg:person.013257066722.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013257066722.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "M. V. Lomonosov Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaev", 
        "givenName": "S. A.", 
        "id": "sg:person.014124155203.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124155203.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "A.V. Topchiev Institute of Petrochemical Synthesis of the RAS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arapova", 
        "givenName": "O. V.", 
        "id": "sg:person.016362165475.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362165475.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V.Topchiev Institute of Petrochemical Synthesis", 
          "id": "https://www.grid.ac/institutes/grid.423490.8", 
          "name": [
            "A.V. Topchiev Institute of Petrochemical Synthesis of the RAS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bukhtenko", 
        "givenName": "O. V.", 
        "id": "sg:person.015732065651.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732065651.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "N.N.Semenov Institute of Chemical Physics of the RAS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksimov", 
        "givenName": "Yu. V.", 
        "id": "sg:person.015535171713.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015535171713.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NS Kurnakova Institute of General and Inorganic Chemistry", 
          "id": "https://www.grid.ac/institutes/grid.435216.7", 
          "name": [
            "N.S. Kurnakov Institute of General and Inorganic Chemistry of the RAS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirdyankin", 
        "givenName": "D. I.", 
        "id": "sg:person.013033663760.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033663760.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A. N. Nesmeyanov Institute of Organoelement Compounds", 
          "id": "https://www.grid.ac/institutes/grid.431939.5", 
          "name": [
            "A. N. Nesmeyanov Institute of Organoelement Compounds of the RAS, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasil\u2019kov", 
        "givenName": "A. Yu.", 
        "id": "sg:person.013260107356.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260107356.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0020168507040103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006335274", 
          "https://doi.org/10.1134/s0020168507040103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0965544113060145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008397910", 
          "https://doi.org/10.1134/s0965544113060145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2014.03.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008531268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ceat.200900207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010936683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2016.11.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011373385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5gc01054c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012368961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c004654j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012520363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c004654j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012520363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/jm9960600207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017201903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2005.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017899335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2005.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017899335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1cs15124j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019825701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2016.01.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022077684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enpol.2008.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030776803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaap.2016.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031210036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2gc35805k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031607181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2016.10.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033880227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11676-015-0032-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037465967", 
          "https://doi.org/10.1007/s11676-015-0032-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/217/1/012096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038374978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mencom.2016.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038934695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s0361521912020115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038969764", 
          "https://doi.org/10.3103/s0361521912020115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2015.12.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2015.12.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2015.12.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biortech.2015.12.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cs35188a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041647266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2007.10.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042501231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biombioe.2004.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043690899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2014.03.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045034829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-8914(48)90038-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046895901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jmse.0000036037.84271.f0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047589450", 
          "https://doi.org/10.1023/b:jmse.0000036037.84271.f0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11172-006-0111-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048541658", 
          "https://doi.org/10.1007/s11172-006-0111-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11172-006-0111-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048541658", 
          "https://doi.org/10.1007/s11172-006-0111-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2016.02.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051634612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr00017a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053758533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm00013a013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055406188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp202078p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056082501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp202078p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056082501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/om030633x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056272541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2009082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057835714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3428415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057950330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.355256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057972669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/jjap.50.08jf11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073834234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7868/s0028242113060142", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074094111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0036024417090059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091307062", 
          "https://doi.org/10.1134/s0036024417090059"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "Active iron-containing nanosized components have been formed on the lignin surface. The metal was deposited on the lignin from an ethanol solution of Fe(acac)3 and from a colloid solution of iron metal particles obtained beforehand by metal vapor synthesis. These active components are able to absorb microwave radiation and are suitable for microwave-assisted high-rate dehydrogenation and dry reforming of lignin without addition of a carbon adsorbent, as a supplementary radiation absorbing material, to the feedstock. The dependence of the solid lignin heating dynamics on the concentration of supported iron particles was investigated. The threshold Fe concentration equal to 0.5 wt.%, providing the highest rate of sample heating up to the reforming and plasma generation temperature was identified. The microstructure and magnetic properties of iron-containing nanoparticles supported on lignin were studied before and after the reforming. The Fe3O4 nanoparticles and also core-shell Fe3O4@\u03b3-Fe-\u0421 nanostructures are formed during the reforming of lignin samples. The catalytic performance of iron-based nanoparticles toward the lignin conversion is manifested as increasing selectivity to hydrogen and syngas, which reaches 94% at the Fe concentration of 2 wt.%. It was found that with microwave irradiation under argon, hydrogen predominates in the gas. In the \u0421\u041e2 atmosphere, dry reforming takes place to give syngas with the \u0421\u041e/\u041d2 ratio of ~ 0.9. In both cases, the degree of hydrogen recovery from lignin reaches 90\u201394%. Graphical abstractThe microwave-supported deposition of iron on the lignin surface gives active well defined nanoparticles Fe3O4 and also core-shell Fe3O4@\u03b3-Fe-\u0421 nanostructures. These nanocomponents provide for high-rate microwave-assisted dehydrogenation and dry reforming of lignin. The microwave-supported deposition of iron on the lignin surface gives active well defined nanoparticles Fe3O4 and also core-shell Fe3O4@\u03b3-Fe-\u0421 nanostructures. These nanocomponents provide for high-rate microwave-assisted dehydrogenation and dry reforming of lignin.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11051-018-4185-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028317", 
        "issn": [
          "1388-0764", 
          "1572-896X"
        ], 
        "name": "Journal of Nanoparticle Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Fe-containing nanoparticles used as effective catalysts of lignin reforming to syngas and hydrogen assisted by microwave irradiation", 
    "pagination": "86", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b5da98cac8e435fc7691aa4d6d016a9a2a589e2db03bf837a1052432bdc2512e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11051-018-4185-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101699725"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11051-018-4185-7", 
      "https://app.dimensions.ai/details/publication/pub.1101699725"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72865_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11051-018-4185-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11051-018-4185-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11051-018-4185-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11051-018-4185-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11051-018-4185-7'


 

This table displays all metadata directly associated to this object as RDF triples.

243 TRIPLES      21 PREDICATES      65 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11051-018-4185-7 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N644805526c814aebbe36f61fbeadec93
4 schema:citation sg:pub.10.1007/s11172-006-0111-8
5 sg:pub.10.1007/s11676-015-0032-1
6 sg:pub.10.1023/b:jmse.0000036037.84271.f0
7 sg:pub.10.1134/s0020168507040103
8 sg:pub.10.1134/s0036024417090059
9 sg:pub.10.1134/s0965544113060145
10 sg:pub.10.3103/s0361521912020115
11 https://doi.org/10.1002/ceat.200900207
12 https://doi.org/10.1016/0031-8914(48)90038-x
13 https://doi.org/10.1016/j.apsusc.2016.01.107
14 https://doi.org/10.1016/j.biombioe.2004.09.002
15 https://doi.org/10.1016/j.biortech.2014.03.103
16 https://doi.org/10.1016/j.biortech.2015.12.085
17 https://doi.org/10.1016/j.biortech.2016.11.072
18 https://doi.org/10.1016/j.carbon.2014.03.037
19 https://doi.org/10.1016/j.cej.2016.02.028
20 https://doi.org/10.1016/j.cej.2016.10.031
21 https://doi.org/10.1016/j.enpol.2008.09.036
22 https://doi.org/10.1016/j.jaap.2016.03.011
23 https://doi.org/10.1016/j.jmmm.2007.10.030
24 https://doi.org/10.1016/j.mencom.2016.04.002
25 https://doi.org/10.1016/j.physrep.2005.08.004
26 https://doi.org/10.1021/cm00013a013
27 https://doi.org/10.1021/cr00017a016
28 https://doi.org/10.1021/jp202078p
29 https://doi.org/10.1021/om030633x
30 https://doi.org/10.1039/c004654j
31 https://doi.org/10.1039/c1cs15124j
32 https://doi.org/10.1039/c2cs35188a
33 https://doi.org/10.1039/c2gc35805k
34 https://doi.org/10.1039/c5gc01054c
35 https://doi.org/10.1039/jm9960600207
36 https://doi.org/10.1063/1.2009082
37 https://doi.org/10.1063/1.3428415
38 https://doi.org/10.1063/1.355256
39 https://doi.org/10.1088/1742-6596/217/1/012096
40 https://doi.org/10.7567/jjap.50.08jf11
41 https://doi.org/10.7868/s0028242113060142
42 schema:datePublished 2018-03
43 schema:datePublishedReg 2018-03-01
44 schema:description Active iron-containing nanosized components have been formed on the lignin surface. The metal was deposited on the lignin from an ethanol solution of Fe(acac)3 and from a colloid solution of iron metal particles obtained beforehand by metal vapor synthesis. These active components are able to absorb microwave radiation and are suitable for microwave-assisted high-rate dehydrogenation and dry reforming of lignin without addition of a carbon adsorbent, as a supplementary radiation absorbing material, to the feedstock. The dependence of the solid lignin heating dynamics on the concentration of supported iron particles was investigated. The threshold Fe concentration equal to 0.5 wt.%, providing the highest rate of sample heating up to the reforming and plasma generation temperature was identified. The microstructure and magnetic properties of iron-containing nanoparticles supported on lignin were studied before and after the reforming. The Fe3O4 nanoparticles and also core-shell Fe3O4@γ-Fe-С nanostructures are formed during the reforming of lignin samples. The catalytic performance of iron-based nanoparticles toward the lignin conversion is manifested as increasing selectivity to hydrogen and syngas, which reaches 94% at the Fe concentration of 2 wt.%. It was found that with microwave irradiation under argon, hydrogen predominates in the gas. In the СО2 atmosphere, dry reforming takes place to give syngas with the СО/Н2 ratio of ~ 0.9. In both cases, the degree of hydrogen recovery from lignin reaches 90–94%. Graphical abstractThe microwave-supported deposition of iron on the lignin surface gives active well defined nanoparticles Fe3O4 and also core-shell Fe3O4@γ-Fe-С nanostructures. These nanocomponents provide for high-rate microwave-assisted dehydrogenation and dry reforming of lignin. The microwave-supported deposition of iron on the lignin surface gives active well defined nanoparticles Fe3O4 and also core-shell Fe3O4@γ-Fe-С nanostructures. These nanocomponents provide for high-rate microwave-assisted dehydrogenation and dry reforming of lignin.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N0ca0eb99cb064d5f848409f38e6e9e67
49 Nec04ff19123b434fab2d5fd71102e865
50 sg:journal.1028317
51 schema:name Fe-containing nanoparticles used as effective catalysts of lignin reforming to syngas and hydrogen assisted by microwave irradiation
52 schema:pagination 86
53 schema:productId N3f686b3f0f5448d9ac4efa83d7834acf
54 N86e346cf7cf140159ca96f0dc5860459
55 Nd036ceb6b6224ec3bcdae915f2cad90d
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101699725
57 https://doi.org/10.1007/s11051-018-4185-7
58 schema:sdDatePublished 2019-04-11T12:54
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N1b88f2f92aaa43d98a410fca4de9a314
61 schema:url https://link.springer.com/10.1007%2Fs11051-018-4185-7
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0ca0eb99cb064d5f848409f38e6e9e67 schema:issueNumber 3
66 rdf:type schema:PublicationIssue
67 N10a78f4e9fbc4038aed9fdcd9d6ea305 rdf:first sg:person.014124155203.66
68 rdf:rest N18f23252fc774e7a88f59d585cd5c430
69 N10afb91493c4479f98058a3a5c6e4706 rdf:first sg:person.013260107356.94
70 rdf:rest rdf:nil
71 N18f23252fc774e7a88f59d585cd5c430 rdf:first sg:person.016362165475.00
72 rdf:rest N7617e60a71ca40538384eb04ca00c46c
73 N1b88f2f92aaa43d98a410fca4de9a314 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N2cc7f439da564e2ea9d56e3693e2eea3 rdf:first sg:person.015535171713.64
76 rdf:rest Neccf0773fe5c45b6b07e0f631f9f42c8
77 N3f686b3f0f5448d9ac4efa83d7834acf schema:name doi
78 schema:value 10.1007/s11051-018-4185-7
79 rdf:type schema:PropertyValue
80 N644805526c814aebbe36f61fbeadec93 rdf:first sg:person.015045563603.02
81 rdf:rest Nd7160b830e7c4b7a95f4930c50462556
82 N7617e60a71ca40538384eb04ca00c46c rdf:first sg:person.015732065651.56
83 rdf:rest N2cc7f439da564e2ea9d56e3693e2eea3
84 N86e346cf7cf140159ca96f0dc5860459 schema:name dimensions_id
85 schema:value pub.1101699725
86 rdf:type schema:PropertyValue
87 Nd036ceb6b6224ec3bcdae915f2cad90d schema:name readcube_id
88 schema:value b5da98cac8e435fc7691aa4d6d016a9a2a589e2db03bf837a1052432bdc2512e
89 rdf:type schema:PropertyValue
90 Nd7160b830e7c4b7a95f4930c50462556 rdf:first sg:person.013257066722.09
91 rdf:rest N10a78f4e9fbc4038aed9fdcd9d6ea305
92 Nec04ff19123b434fab2d5fd71102e865 schema:volumeNumber 20
93 rdf:type schema:PublicationVolume
94 Neccf0773fe5c45b6b07e0f631f9f42c8 rdf:first sg:person.013033663760.44
95 rdf:rest N10afb91493c4479f98058a3a5c6e4706
96 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
97 schema:name Chemical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
100 schema:name Physical Chemistry (incl. Structural)
101 rdf:type schema:DefinedTerm
102 sg:journal.1028317 schema:issn 1388-0764
103 1572-896X
104 schema:name Journal of Nanoparticle Research
105 rdf:type schema:Periodical
106 sg:person.013033663760.44 schema:affiliation https://www.grid.ac/institutes/grid.435216.7
107 schema:familyName Kirdyankin
108 schema:givenName D. I.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033663760.44
110 rdf:type schema:Person
111 sg:person.013257066722.09 schema:affiliation https://www.grid.ac/institutes/grid.435216.7
112 schema:familyName Ellert
113 schema:givenName O. G.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013257066722.09
115 rdf:type schema:Person
116 sg:person.013260107356.94 schema:affiliation https://www.grid.ac/institutes/grid.431939.5
117 schema:familyName Vasil’kov
118 schema:givenName A. Yu.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013260107356.94
120 rdf:type schema:Person
121 sg:person.014124155203.66 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
122 schema:familyName Nikolaev
123 schema:givenName S. A.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014124155203.66
125 rdf:type schema:Person
126 sg:person.015045563603.02 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
127 schema:familyName Tsodikov
128 schema:givenName M. V.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015045563603.02
130 rdf:type schema:Person
131 sg:person.015535171713.64 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
132 schema:familyName Maksimov
133 schema:givenName Yu. V.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015535171713.64
135 rdf:type schema:Person
136 sg:person.015732065651.56 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
137 schema:familyName Bukhtenko
138 schema:givenName O. V.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732065651.56
140 rdf:type schema:Person
141 sg:person.016362165475.00 schema:affiliation https://www.grid.ac/institutes/grid.423490.8
142 schema:familyName Arapova
143 schema:givenName O. V.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016362165475.00
145 rdf:type schema:Person
146 sg:pub.10.1007/s11172-006-0111-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048541658
147 https://doi.org/10.1007/s11172-006-0111-8
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11676-015-0032-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037465967
150 https://doi.org/10.1007/s11676-015-0032-1
151 rdf:type schema:CreativeWork
152 sg:pub.10.1023/b:jmse.0000036037.84271.f0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047589450
153 https://doi.org/10.1023/b:jmse.0000036037.84271.f0
154 rdf:type schema:CreativeWork
155 sg:pub.10.1134/s0020168507040103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006335274
156 https://doi.org/10.1134/s0020168507040103
157 rdf:type schema:CreativeWork
158 sg:pub.10.1134/s0036024417090059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091307062
159 https://doi.org/10.1134/s0036024417090059
160 rdf:type schema:CreativeWork
161 sg:pub.10.1134/s0965544113060145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008397910
162 https://doi.org/10.1134/s0965544113060145
163 rdf:type schema:CreativeWork
164 sg:pub.10.3103/s0361521912020115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038969764
165 https://doi.org/10.3103/s0361521912020115
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/ceat.200900207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010936683
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/0031-8914(48)90038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046895901
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.apsusc.2016.01.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022077684
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.biombioe.2004.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043690899
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.biortech.2014.03.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008531268
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.biortech.2015.12.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040768316
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.biortech.2016.11.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011373385
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.carbon.2014.03.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045034829
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.cej.2016.02.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051634612
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.cej.2016.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033880227
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.enpol.2008.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030776803
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jaap.2016.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031210036
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.jmmm.2007.10.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042501231
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.mencom.2016.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038934695
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.physrep.2005.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017899335
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/cm00013a013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055406188
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/cr00017a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053758533
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/jp202078p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056082501
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/om030633x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056272541
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1039/c004654j schema:sameAs https://app.dimensions.ai/details/publication/pub.1012520363
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1039/c1cs15124j schema:sameAs https://app.dimensions.ai/details/publication/pub.1019825701
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1039/c2cs35188a schema:sameAs https://app.dimensions.ai/details/publication/pub.1041647266
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1039/c2gc35805k schema:sameAs https://app.dimensions.ai/details/publication/pub.1031607181
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1039/c5gc01054c schema:sameAs https://app.dimensions.ai/details/publication/pub.1012368961
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1039/jm9960600207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017201903
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1063/1.2009082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057835714
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1063/1.3428415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057950330
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1063/1.355256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057972669
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1088/1742-6596/217/1/012096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038374978
224 rdf:type schema:CreativeWork
225 https://doi.org/10.7567/jjap.50.08jf11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073834234
226 rdf:type schema:CreativeWork
227 https://doi.org/10.7868/s0028242113060142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074094111
228 rdf:type schema:CreativeWork
229 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
230 schema:name M. V. Lomonosov Moscow State University, Moscow, Russia
231 rdf:type schema:Organization
232 https://www.grid.ac/institutes/grid.423490.8 schema:alternateName A.V.Topchiev Institute of Petrochemical Synthesis
233 schema:name A.V. Topchiev Institute of Petrochemical Synthesis of the RAS, Moscow, Russia
234 rdf:type schema:Organization
235 https://www.grid.ac/institutes/grid.431939.5 schema:alternateName A. N. Nesmeyanov Institute of Organoelement Compounds
236 schema:name A. N. Nesmeyanov Institute of Organoelement Compounds of the RAS, Moscow, Russia
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.435216.7 schema:alternateName NS Kurnakova Institute of General and Inorganic Chemistry
239 schema:name N.S. Kurnakov Institute of General and Inorganic Chemistry of the RAS, Moscow, Russia
240 rdf:type schema:Organization
241 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
242 schema:name N.N.Semenov Institute of Chemical Physics of the RAS, Moscow, Russia
243 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...