High fluorescent water soluble CdTe quantum dots—a promising system for light harvesting applications View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05-19

AUTHORS

Arsenio de Sa, Isabel Moura, Ana S. Abreu, Manuel Oliveira, Miguel F. Ferreira, Ana V. Machado

ABSTRACT

The entrapment of quantum dots (QDs) in the inner part of micelles formed by surfactant polymers is a powerful methodology to prepare stable and photoluminescent core nanoparticles with enhanced optical properties. These features are crucial for the application of QDs in the design of hybrid assemblies for light harvesting applications, where energy transfer processes are required. The present work was focused on the synthesis of a surfactant homopolymer, poly (acrylic acid) (PAA) macroRAFT, to be used as a stabilizer of hydrophobic cadmium telluride (CdTe) QDs in aqueous solution. PAA macroRAFT was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization in a single chemical reaction. Its micelles were used to entangle and entrap hydrophobic CdTe QDs, with different molar ratio of polymer and QDs. The morphology and optical properties of the entrapped QDs were determined. The results showed that PAA macroRAFT is able to form micelles with a critical micelle concentration of 2.08 mg/mL. It was also noticed that the molar ratio of polymer and QDs have high influence on the QDs’ morphology and their optical properties. The QDs’ photoluminescence quantum yield was enhanced approximately 23% upon their entrapment in PAA macroRAFT micelles, using 60 equivalents of polymer. Moreover, while in solution, QDs are well-dispersed, having a 3.5 nm diameter, upon being entrapped in the micelles, tend to form clusters with a size around 100 nm.Graphical Abstractᅟ More... »

PAGES

180

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11051-017-3872-0

DOI

http://dx.doi.org/10.1007/s11051-017-3872-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085437641


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.10328.38", 
          "name": [
            "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Sa", 
        "givenName": "Arsenio", 
        "id": "sg:person.01106165052.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106165052.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.10328.38", 
          "name": [
            "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moura", 
        "givenName": "Isabel", 
        "id": "sg:person.015711657521.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015711657521.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.10328.38", 
          "name": [
            "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abreu", 
        "givenName": "Ana S.", 
        "id": "sg:person.015106172745.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015106172745.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.10328.38", 
          "name": [
            "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oliveira", 
        "givenName": "Manuel", 
        "id": "sg:person.015776326000.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015776326000.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.10328.38", 
          "name": [
            "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferreira", 
        "givenName": "Miguel F.", 
        "id": "sg:person.010007547672.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010007547672.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.10328.38", 
          "name": [
            "Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azur\u00e9m, 4800-058, Guimar\u00e3es, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Machado", 
        "givenName": "Ana V.", 
        "id": "sg:person.0672574536.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672574536.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1018921513605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027817539", 
          "https://doi.org/10.1023/a:1018921513605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/12_048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001973996", 
          "https://doi.org/10.1007/12_048"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05-19", 
    "datePublishedReg": "2017-05-19", 
    "description": "The entrapment of quantum dots (QDs) in the inner part of micelles formed by surfactant polymers is a powerful methodology to prepare stable and photoluminescent core nanoparticles with enhanced optical properties. These features are crucial for the application of QDs in the design of hybrid assemblies for light harvesting applications, where energy transfer processes are required. The present work was focused on the synthesis of a surfactant homopolymer, poly (acrylic acid) (PAA) macroRAFT, to be used as a stabilizer of hydrophobic cadmium telluride (CdTe) QDs in aqueous solution. PAA macroRAFT was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization in a single chemical reaction. Its micelles were used to entangle and entrap hydrophobic CdTe QDs, with different molar ratio of polymer and QDs. The morphology and optical properties of the entrapped QDs were determined. The results showed that PAA macroRAFT is able to form micelles with a critical micelle concentration of 2.08\u00a0mg/mL. It was also noticed that the molar ratio of polymer and QDs have high influence on the QDs\u2019 morphology and their optical properties. The QDs\u2019 photoluminescence quantum yield was enhanced approximately 23% upon their entrapment in PAA macroRAFT micelles, using 60 equivalents of polymer. Moreover, while in solution, QDs are well-dispersed, having a 3.5\u00a0nm diameter, upon being entrapped in the micelles, tend to form clusters with a size around 100\u00a0nm.Graphical Abstract\u115f", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11051-017-3872-0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1028317", 
        "issn": [
          "1388-0764", 
          "1572-896X"
        ], 
        "name": "Journal of Nanoparticle Research", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "keywords": [
      "light-harvesting applications", 
      "CdTe quantum dots", 
      "reversible addition-fragmentation chain transfer (RAFT) polymerization", 
      "addition-fragmentation chain transfer polymerization", 
      "quantum dots", 
      "optical properties", 
      "water-soluble CdTe quantum dots", 
      "chain transfer polymerization", 
      "molar ratio", 
      "applications of QDs", 
      "critical micelle concentration", 
      "different molar ratios", 
      "photoluminescence quantum yield", 
      "energy transfer process", 
      "single chemical reaction", 
      "cadmium telluride (CdTe) QDs", 
      "surfactant polymers", 
      "core nanoparticles", 
      "aqueous solution", 
      "micelle concentration", 
      "macroRAFT", 
      "chemical reactions", 
      "polymers", 
      "micelles", 
      "quantum yield", 
      "harvesting applications", 
      "transfer process", 
      "hybrid assembly", 
      "promising system", 
      "powerful methodology", 
      "dots", 
      "properties", 
      "polymerization", 
      "homopolymers", 
      "nanoparticles", 
      "morphology", 
      "entrapment", 
      "present work", 
      "synthesis", 
      "solution", 
      "reaction", 
      "stabilizer", 
      "Graphical", 
      "applications", 
      "assembly", 
      "yield", 
      "concentration", 
      "inner part", 
      "ratio", 
      "clusters", 
      "equivalent", 
      "diameter", 
      "size", 
      "high influence", 
      "process", 
      "work", 
      "influence", 
      "methodology", 
      "system", 
      "design", 
      "results", 
      "features", 
      "part"
    ], 
    "name": "High fluorescent water soluble CdTe quantum dots\u2014a promising system for light harvesting applications", 
    "pagination": "180", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085437641"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11051-017-3872-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11051-017-3872-0", 
      "https://app.dimensions.ai/details/publication/pub.1085437641"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_748.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11051-017-3872-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11051-017-3872-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11051-017-3872-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11051-017-3872-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11051-017-3872-0'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      93 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11051-017-3872-0 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 anzsrc-for:09
4 anzsrc-for:0912
5 anzsrc-for:10
6 anzsrc-for:1007
7 schema:author N5716f65dbd3e4be281b5c9850b83f0c6
8 schema:citation sg:pub.10.1007/12_048
9 sg:pub.10.1023/a:1018921513605
10 schema:datePublished 2017-05-19
11 schema:datePublishedReg 2017-05-19
12 schema:description The entrapment of quantum dots (QDs) in the inner part of micelles formed by surfactant polymers is a powerful methodology to prepare stable and photoluminescent core nanoparticles with enhanced optical properties. These features are crucial for the application of QDs in the design of hybrid assemblies for light harvesting applications, where energy transfer processes are required. The present work was focused on the synthesis of a surfactant homopolymer, poly (acrylic acid) (PAA) macroRAFT, to be used as a stabilizer of hydrophobic cadmium telluride (CdTe) QDs in aqueous solution. PAA macroRAFT was synthesized by reversible addition-fragmentation chain-transfer (RAFT) polymerization in a single chemical reaction. Its micelles were used to entangle and entrap hydrophobic CdTe QDs, with different molar ratio of polymer and QDs. The morphology and optical properties of the entrapped QDs were determined. The results showed that PAA macroRAFT is able to form micelles with a critical micelle concentration of 2.08 mg/mL. It was also noticed that the molar ratio of polymer and QDs have high influence on the QDs’ morphology and their optical properties. The QDs’ photoluminescence quantum yield was enhanced approximately 23% upon their entrapment in PAA macroRAFT micelles, using 60 equivalents of polymer. Moreover, while in solution, QDs are well-dispersed, having a 3.5 nm diameter, upon being entrapped in the micelles, tend to form clusters with a size around 100 nm.Graphical Abstractᅟ
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N43ebf5e845b64600a03f43b358b73c19
16 Nbdc2704b26bd401e90bdc62d5404d40a
17 sg:journal.1028317
18 schema:keywords CdTe quantum dots
19 Graphical
20 addition-fragmentation chain transfer polymerization
21 applications
22 applications of QDs
23 aqueous solution
24 assembly
25 cadmium telluride (CdTe) QDs
26 chain transfer polymerization
27 chemical reactions
28 clusters
29 concentration
30 core nanoparticles
31 critical micelle concentration
32 design
33 diameter
34 different molar ratios
35 dots
36 energy transfer process
37 entrapment
38 equivalent
39 features
40 harvesting applications
41 high influence
42 homopolymers
43 hybrid assembly
44 influence
45 inner part
46 light-harvesting applications
47 macroRAFT
48 methodology
49 micelle concentration
50 micelles
51 molar ratio
52 morphology
53 nanoparticles
54 optical properties
55 part
56 photoluminescence quantum yield
57 polymerization
58 polymers
59 powerful methodology
60 present work
61 process
62 promising system
63 properties
64 quantum dots
65 quantum yield
66 ratio
67 reaction
68 results
69 reversible addition-fragmentation chain transfer (RAFT) polymerization
70 single chemical reaction
71 size
72 solution
73 stabilizer
74 surfactant polymers
75 synthesis
76 system
77 transfer process
78 water-soluble CdTe quantum dots
79 work
80 yield
81 schema:name High fluorescent water soluble CdTe quantum dots—a promising system for light harvesting applications
82 schema:pagination 180
83 schema:productId N6cdfa57e8d114e8fbb0e37e476094240
84 Nbb9f7eee28764f9d84a1674d34e6c00a
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085437641
86 https://doi.org/10.1007/s11051-017-3872-0
87 schema:sdDatePublished 2022-11-24T21:02
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N47fe6c6788304e72b12e5e32e2ba94fc
90 schema:url https://doi.org/10.1007/s11051-017-3872-0
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N08950259cfc04fe2b645d0c9a0a58c2b rdf:first sg:person.015776326000.31
95 rdf:rest Na2c50e09187948ab8a7e398cc9b1226c
96 N1ce894031c0946a29183397b4d5ae1ae rdf:first sg:person.0672574536.01
97 rdf:rest rdf:nil
98 N43258971f70a4f1f8da7d5caff82ebf8 rdf:first sg:person.015711657521.08
99 rdf:rest Nf87c32422f584cae8aa5c71c0ae36ce3
100 N43ebf5e845b64600a03f43b358b73c19 schema:issueNumber 5
101 rdf:type schema:PublicationIssue
102 N47fe6c6788304e72b12e5e32e2ba94fc schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N5716f65dbd3e4be281b5c9850b83f0c6 rdf:first sg:person.01106165052.62
105 rdf:rest N43258971f70a4f1f8da7d5caff82ebf8
106 N6cdfa57e8d114e8fbb0e37e476094240 schema:name dimensions_id
107 schema:value pub.1085437641
108 rdf:type schema:PropertyValue
109 Na2c50e09187948ab8a7e398cc9b1226c rdf:first sg:person.010007547672.00
110 rdf:rest N1ce894031c0946a29183397b4d5ae1ae
111 Nbb9f7eee28764f9d84a1674d34e6c00a schema:name doi
112 schema:value 10.1007/s11051-017-3872-0
113 rdf:type schema:PropertyValue
114 Nbdc2704b26bd401e90bdc62d5404d40a schema:volumeNumber 19
115 rdf:type schema:PublicationVolume
116 Nf87c32422f584cae8aa5c71c0ae36ce3 rdf:first sg:person.015106172745.00
117 rdf:rest N08950259cfc04fe2b645d0c9a0a58c2b
118 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
119 schema:name Physical Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
122 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
123 rdf:type schema:DefinedTerm
124 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
125 schema:name Engineering
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
128 schema:name Materials Engineering
129 rdf:type schema:DefinedTerm
130 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
131 schema:name Technology
132 rdf:type schema:DefinedTerm
133 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
134 schema:name Nanotechnology
135 rdf:type schema:DefinedTerm
136 sg:journal.1028317 schema:issn 1388-0764
137 1572-896X
138 schema:name Journal of Nanoparticle Research
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.010007547672.00 schema:affiliation grid-institutes:grid.10328.38
142 schema:familyName Ferreira
143 schema:givenName Miguel F.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010007547672.00
145 rdf:type schema:Person
146 sg:person.01106165052.62 schema:affiliation grid-institutes:grid.10328.38
147 schema:familyName de Sa
148 schema:givenName Arsenio
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106165052.62
150 rdf:type schema:Person
151 sg:person.015106172745.00 schema:affiliation grid-institutes:grid.10328.38
152 schema:familyName Abreu
153 schema:givenName Ana S.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015106172745.00
155 rdf:type schema:Person
156 sg:person.015711657521.08 schema:affiliation grid-institutes:grid.10328.38
157 schema:familyName Moura
158 schema:givenName Isabel
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015711657521.08
160 rdf:type schema:Person
161 sg:person.015776326000.31 schema:affiliation grid-institutes:grid.10328.38
162 schema:familyName Oliveira
163 schema:givenName Manuel
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015776326000.31
165 rdf:type schema:Person
166 sg:person.0672574536.01 schema:affiliation grid-institutes:grid.10328.38
167 schema:familyName Machado
168 schema:givenName Ana V.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672574536.01
170 rdf:type schema:Person
171 sg:pub.10.1007/12_048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001973996
172 https://doi.org/10.1007/12_048
173 rdf:type schema:CreativeWork
174 sg:pub.10.1023/a:1018921513605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027817539
175 https://doi.org/10.1023/a:1018921513605
176 rdf:type schema:CreativeWork
177 grid-institutes:grid.10328.38 schema:alternateName Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
178 schema:name Institute of Polymers and Composites (IPC) and Institute of Nanostructures, Nanomodelling and Nanofabrication (i3N), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...