Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02-11

AUTHORS

Yuri I. Golovin, Natalia L. Klyachko, Alexander G. Majouga, Marina Sokolsky, Alexander V. Kabanov

ABSTRACT

The scope of this review involves one of the most promising branches of new-generation biomedicine, namely magnetic nanotheranostics using remote control of functionalized magnetic nanoparticles (f-MNPs) by means of alternating magnetic fields (AMFs). The review is mainly focused on new approach which utilizes non-heating low frequency magnetic fields (LFMFs) for nanomechanical actuation of f-MNPs. This approach is compared to such traditional ones as magnetic resonance imaging (MRI) and radio-frequency (RF) magnetic hyperthermia (MH) which utilize high frequency heating AMF. The innovative principles and specific models of non-thermal magnetomechanical actuation of biostructures by MNP rotational oscillations in LFMF are described. The discussed strategy allows biodistribution monitoring in situ, delivering drugs to target tissues and releasing them with controlled rate, controlling biocatalytic reaction kinetics, inducing malignant cell apoptosis, and more. Optimization of both LFMF and f-MNP parameters may lead to dramatic improvement of treatment efficiency, locality, and selectivity on molecular or cellular levels and allow implementing both drug and drugless, i.e., pure nanomechanical therapy, in particular cancer therapy. The optimal parameters within this approach differ significantly from those used in MH or MRI because of the principal difference in the f-MNP actuation modes. It is shown that specifically designed high gradient, steady magnetic field enables diagnostic and therapeutic LFMF impact localization in the deep tissues within the area ranging from a millimeter to a few centimeters and 3D scanning of affected region, if necessary. More... »

PAGES

63

References to SciGraph publications

  • 2001-05. A new type of magnetoplastic effects in linear amorphous polymers in PHYSICS OF THE SOLID STATE
  • 2015-02-25. Magnetic Particle Imaging in BILDVERARBEITUNG FÜR DIE MEDIZIN 2015
  • 2012. Magnetic Particle Imaging, An Introduction to Imaging Principles and Scanner Instrumentation in NONE
  • 2016-05-04. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers in SCIENTIFIC REPORTS
  • 2010-09-16. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme in JOURNAL OF NEURO-ONCOLOGY
  • 2013-10-07. Effect of magnetic dipolar interactions on nanoparticle heating efficiency: Implications for cancer hyperthermia in SCIENTIFIC REPORTS
  • 2007-12-02. Nanomechanical analysis of cells from cancer patients in NATURE NANOTECHNOLOGY
  • 2007-03. Biasing reaction pathways with mechanical force in NATURE
  • 2005-08-25. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression in CANCER IMMUNOLOGY, IMMUNOTHERAPY
  • 2003-11-06. Magnetic control of ferroelectric polarization in NATURE
  • 2008. Handbook of Molecular Force Spectroscopy in NONE
  • 2013-06-06. Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy in NATURE PROTOCOLS
  • 2009-11-29. A twist on tumour targeting in NATURE MATERIALS
  • 2004-05. Magnetoplastic effects in solids in PHYSICS OF THE SOLID STATE
  • 2006-08. Multiferroic and magnetoelectric materials in NATURE
  • 2013-11. Single-domain magnetic nanoparticles as force generators for the nanomechanical control of biochemical reactions by low-frequency magnetic fields in BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES: PHYSICS
  • 2006. Electromagnetics in Biology in NONE
  • 2014-03-01. Magnetite and Other Fe-Oxide Nanoparticles in HANDBOOK OF NANOMATERIALS PROPERTIES
  • 2012. Magnetic Particle Imaging, A Novel SPIO Nanoparticle Imaging Technique in NONE
  • 2007-12-23. Nanomagnetic actuation of receptor-mediated signal transduction in NATURE NANOTECHNOLOGY
  • 2007-11-18. Intrinsic motions along an enzymatic reaction trajectory in NATURE
  • 2013-10-30. Core/shell-type nanorods of Tb3+-doped LaPO4, modified with amine groups, revealing reduced cytotoxicity in JOURNAL OF NANOPARTICLE RESEARCH
  • 2013-04-16. Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers in NATURE COMMUNICATIONS
  • 2008-03. Remote control of cellular behaviour with magnetic nanoparticles in NATURE NANOTECHNOLOGY
  • 2016-09-20. Remote Actuation of Magnetic Nanoparticles For Cancer Cell Selective Treatment Through Cytoskeletal Disruption in SCIENTIFIC REPORTS
  • 2010-06-27. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles in NATURE NANOTECHNOLOGY
  • 2015-03-13. Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles in SCIENTIFIC REPORTS
  • 2014-03-01. Magnetic Nanoparticles for Biomedical Applications in HANDBOOK OF NANOMATERIALS PROPERTIES
  • 2013. Single-molecule Studies of Proteins in NONE
  • 2014-07-06. Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules in PHYSICS OF THE SOLID STATE
  • 2013-10-16. Magneto-electric Nanoparticles to Enable Field-controlled High-Specificity Drug Delivery to Eradicate Ovarian Cancer Cells in SCIENTIFIC REPORTS
  • 2011-11-23. Dynamic effects of dipolar interactions on the magnetic behavior of magnetite nanoparticles in JOURNAL OF NANOPARTICLE RESEARCH
  • 2008-03-09. Following translation by single ribosomes one codon at a time in NATURE
  • 1998-11. Reversible and irreversible magnetic-field-induced changes in the plastic properties of NaCl crystals in PHYSICS OF THE SOLID STATE
  • 1996-08. Effects of Hyperthermia on Intracellular Chloride in THE JOURNAL OF MEMBRANE BIOLOGY
  • 2009-11-29. Biofunctionalized magnetic-vortex microdiscs for targeted cancer-cell destruction in NATURE MATERIALS
  • 2005-06. Tomographic imaging using the nonlinear response of magnetic particles in NATURE
  • 2014. Principles and Applications of Magnetic Particle Imaging in NONE
  • 2016-05-28. Nanotheranostics and In-Vivo Imaging in NANOMEDICINE
  • 2016-06. Relationship between the Size of Magnetic Nanoparticles and Efficiency of MRT Imaging of Cerebral Glioma in Rats in BULLETIN OF EXPERIMENTAL BIOLOGY AND MEDICINE
  • 2013-01-24. Magnetic Nanoparticles for Tumor Imaging and Therapy: A So-Called Theranostic System in PHARMACEUTICAL RESEARCH
  • 2007-03-21. A reaction to stress in NATURE
  • 2013-03. A new approach to the control of biochemical reactions in a magnetic nanosuspension using a low-frequency magnetic field in TECHNICAL PHYSICS LETTERS
  • 2007-07-20. Intracellular heating of living cells through Néel relaxation of magnetic nanoparticles in EUROPEAN BIOPHYSICS JOURNAL
  • 2012-09-13. Influence of NaBH4 on the size, composition, and magnetic properties of CoFe2O4 nanoparticles synthesized by hydrothermal method in JOURNAL OF NANOPARTICLE RESEARCH
  • 2015-10-05. Synthesis, characterization, and cytotoxicity in human erythrocytes of multifunctional, magnetic, and luminescent nanocrystalline rare earth fluorides in JOURNAL OF NANOPARTICLE RESEARCH
  • 2014-03-01. Stabilization and Characterization of Iron Oxide Superparamagnetic Core-Shell Nanoparticles for Biomedical Applications in HANDBOOK OF NANOMATERIALS PROPERTIES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11051-017-3746-5

    DOI

    http://dx.doi.org/10.1007/s11051-017-3746-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083741566


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biomedical Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Research Technological University \u201cMISIS\u201d, 4, Leninsky Ave., Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.35043.31", 
              "name": [
                "Chemistry Faculty, M.V. Lomonosov Moscow State University, 1-11, Leninsky Gory, Moscow, Russia", 
                "G.R. Derzhavin Tambov State University, Nanocenter, 33, Internatsionalnaya St., Tambov, Russia", 
                "National Research Technological University \u201cMISIS\u201d, 4, Leninsky Ave., Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Golovin", 
            "givenName": "Yuri I.", 
            "id": "sg:person.0637226066.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637226066.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.10698.36", 
              "name": [
                "Chemistry Faculty, M.V. Lomonosov Moscow State University, 1-11, Leninsky Gory, Moscow, Russia", 
                "National Research Technological University \u201cMISIS\u201d, 4, Leninsky Ave., Moscow, Russia", 
                "Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klyachko", 
            "givenName": "Natalia L.", 
            "id": "sg:person.01221266443.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221266443.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Research Technological University \u201cMISIS\u201d, 4, Leninsky Ave., Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.35043.31", 
              "name": [
                "Chemistry Faculty, M.V. Lomonosov Moscow State University, 1-11, Leninsky Gory, Moscow, Russia", 
                "National Research Technological University \u201cMISIS\u201d, 4, Leninsky Ave., Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Majouga", 
            "givenName": "Alexander G.", 
            "id": "sg:person.01200270366.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200270366.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.10698.36", 
              "name": [
                "Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sokolsky", 
            "givenName": "Marina", 
            "id": "sg:person.0716744421.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716744421.40"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA", 
              "id": "http://www.grid.ac/institutes/grid.10698.36", 
              "name": [
                "Chemistry Faculty, M.V. Lomonosov Moscow State University, 1-11, Leninsky Gory, Moscow, Russia", 
                "Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kabanov", 
            "givenName": "Alexander V.", 
            "id": "sg:person.011450571777.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011450571777.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-31107-9_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041591022", 
              "https://doi.org/10.1007/978-3-642-31107-9_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-49989-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019107935", 
              "https://doi.org/10.1007/978-0-387-49989-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10517-016-3398-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051259309", 
              "https://doi.org/10.1007/s10517-016-3398-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.388", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001285727", 
              "https://doi.org/10.1038/nnano.2007.388"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-012-1189-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016032100", 
              "https://doi.org/10.1007/s11051-012-1189-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050186763", 
              "https://doi.org/10.1038/nature02018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00249-007-0197-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042212097", 
              "https://doi.org/10.1007/s00249-007-0197-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-013-2068-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050125787", 
              "https://doi.org/10.1007/s11051-013-2068-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s106378501303005x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050945923", 
              "https://doi.org/10.1134/s106378501303005x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-24133-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028606172", 
              "https://doi.org/10.1007/978-3-642-24133-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041564324", 
              "https://doi.org/10.1038/nature05681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s002329900099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029071099", 
              "https://doi.org/10.1007/s002329900099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2013.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053229914", 
              "https://doi.org/10.1038/nprot.2013.056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-011-0642-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025423820", 
              "https://doi.org/10.1007/s11051-011-0642-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1130675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034935430", 
              "https://doi.org/10.1134/1.1130675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2717", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018990270", 
              "https://doi.org/10.1038/ncomms2717"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/446381a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017707080", 
              "https://doi.org/10.1038/446381a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1063783414070142", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050613345", 
              "https://doi.org/10.1134/s1063783414070142"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-46224-9_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044435433", 
              "https://doi.org/10.1007/978-3-662-46224-9_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1744954", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019837539", 
              "https://doi.org/10.1134/1.1744954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-31107-9_29", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016751237", 
              "https://doi.org/10.1007/978-3-642-31107-9_29"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep25309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004272211", 
              "https://doi.org/10.1038/srep25309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11060-010-0389-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053260208", 
              "https://doi.org/10.1007/s11060-010-0389-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11051-015-3191-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003037693", 
              "https://doi.org/10.1007/s11051-015-3191-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-4921-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040856880", 
              "https://doi.org/10.1007/978-1-4614-4921-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11095-013-0982-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012391846", 
              "https://doi.org/10.1007/s11095-013-0982-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000314268", 
              "https://doi.org/10.1038/nmat2604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-31107-9_34", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003483318", 
              "https://doi.org/10.1007/978-3-642-31107-9_34"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1371366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024481664", 
              "https://doi.org/10.1134/1.1371366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014309386", 
              "https://doi.org/10.1038/nature03808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2008.39", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037558548", 
              "https://doi.org/10.1038/nnano.2008.39"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s1062873813110130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031335821", 
              "https://doi.org/10.3103/s1062873813110130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-04199-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030937560", 
              "https://doi.org/10.1007/978-3-642-04199-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-658-01961-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038982989", 
              "https://doi.org/10.1007/978-3-658-01961-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012273606", 
              "https://doi.org/10.1038/nature05023"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep33560", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048374912", 
              "https://doi.org/10.1038/srep33560"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2591", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004693121", 
              "https://doi.org/10.1038/nmat2591"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049627546", 
              "https://doi.org/10.1038/nnano.2007.418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06410", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035333913", 
              "https://doi.org/10.1038/nature06410"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep02887", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022777257", 
              "https://doi.org/10.1038/srep02887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2010.125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022012087", 
              "https://doi.org/10.1038/nnano.2010.125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep02953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038036933", 
              "https://doi.org/10.1038/srep02953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00262-005-0049-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045298089", 
              "https://doi.org/10.1007/s00262-005-0049-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4939-3634-2_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006142119", 
              "https://doi.org/10.1007/978-1-4939-3634-2_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep09090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042538121", 
              "https://doi.org/10.1038/srep09090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06716", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030840140", 
              "https://doi.org/10.1038/nature06716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-4-431-27914-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014801547", 
              "https://doi.org/10.1007/978-4-431-27914-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-11", 
        "datePublishedReg": "2017-02-11", 
        "description": "The scope of this review involves one of the most promising branches of new-generation biomedicine, namely magnetic nanotheranostics using remote control of functionalized magnetic nanoparticles (f-MNPs) by means of alternating magnetic fields (AMFs). The review is mainly focused on new approach which utilizes non-heating low frequency magnetic fields (LFMFs) for nanomechanical actuation of f-MNPs. This approach is compared to such traditional ones as magnetic resonance imaging (MRI) and radio-frequency (RF) magnetic hyperthermia (MH) which utilize high frequency heating AMF. The innovative principles and specific models of non-thermal magnetomechanical actuation of biostructures by MNP rotational oscillations in LFMF are described. The discussed strategy allows biodistribution monitoring in situ, delivering drugs to target tissues and releasing them with controlled rate, controlling biocatalytic reaction kinetics, inducing malignant cell apoptosis, and more. Optimization of both LFMF and f-MNP parameters may lead to dramatic improvement of treatment efficiency, locality, and selectivity on molecular or cellular levels and allow implementing both drug and drugless, i.e., pure nanomechanical therapy, in particular cancer therapy. The optimal parameters within this approach differ significantly from those used in MH or MRI because of the principal difference in the f-MNP actuation modes. It is shown that specifically designed high gradient, steady magnetic field enables diagnostic and therapeutic LFMF impact localization in the deep tissues within the area ranging from a millimeter to a few centimeters and 3D scanning of affected region, if necessary.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11051-017-3746-5", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4896471", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1028317", 
            "issn": [
              "1388-0764", 
              "1572-896X"
            ], 
            "name": "Journal of Nanoparticle Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "19"
          }
        ], 
        "keywords": [
          "magnetic hyperthermia", 
          "magnetic nanoparticles", 
          "new-generation nanomedicines", 
          "magnetic nanotheranostics", 
          "magnetomechanical actuation", 
          "nanomechanical actuation", 
          "multimodal potential", 
          "nanoparticles", 
          "remote control", 
          "deep tissues", 
          "promising branch", 
          "particular cancer therapies", 
          "reaction kinetics", 
          "cancer therapy", 
          "nanotheranostics", 
          "frequency magnetic fields", 
          "nanomedicine", 
          "magnetic field", 
          "biomedicine", 
          "low frequency magnetic fields", 
          "actuation", 
          "biostructures", 
          "treatment efficiency", 
          "drugless", 
          "malignant cell apoptosis", 
          "dramatic improvement", 
          "selectivity", 
          "situ", 
          "efficiency", 
          "actuation modes", 
          "hyperthermia", 
          "traditional ones", 
          "field", 
          "new approach", 
          "optimal parameters", 
          "impact localization", 
          "millimeters", 
          "scanning", 
          "innovative principles", 
          "monitoring", 
          "AMF", 
          "magnetic resonance imaging", 
          "steady magnetic field", 
          "potential", 
          "approach", 
          "kinetics", 
          "optimization", 
          "cellular level", 
          "high gradients", 
          "imaging", 
          "mode", 
          "rotational oscillations", 
          "centimeters", 
          "parameters", 
          "improvement", 
          "strategies", 
          "area", 
          "tissue", 
          "review", 
          "drugs", 
          "resonance imaging", 
          "localization", 
          "rate", 
          "therapy", 
          "principles", 
          "cell apoptosis", 
          "means", 
          "scope", 
          "control", 
          "one", 
          "principal difference", 
          "gradient", 
          "oscillations", 
          "specific model", 
          "region", 
          "model", 
          "levels", 
          "branches", 
          "apoptosis", 
          "differences", 
          "localities"
        ], 
        "name": "Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine", 
        "pagination": "63", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083741566"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11051-017-3746-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11051-017-3746-5", 
          "https://app.dimensions.ai/details/publication/pub.1083741566"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_719.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11051-017-3746-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11051-017-3746-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11051-017-3746-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11051-017-3746-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11051-017-3746-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    363 TRIPLES      21 PREDICATES      152 URIs      97 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11051-017-3746-5 schema:about anzsrc-for:09
    2 anzsrc-for:0903
    3 schema:author Nf9b21f1ae46141ac8c81f99c72287767
    4 schema:citation sg:pub.10.1007/978-0-387-49989-5
    5 sg:pub.10.1007/978-1-4614-4921-8
    6 sg:pub.10.1007/978-1-4939-3634-2_6
    7 sg:pub.10.1007/978-3-642-04199-0
    8 sg:pub.10.1007/978-3-642-24133-8
    9 sg:pub.10.1007/978-3-642-31107-9_19
    10 sg:pub.10.1007/978-3-642-31107-9_29
    11 sg:pub.10.1007/978-3-642-31107-9_34
    12 sg:pub.10.1007/978-3-658-01961-7
    13 sg:pub.10.1007/978-3-662-46224-9_2
    14 sg:pub.10.1007/978-4-431-27914-3
    15 sg:pub.10.1007/s002329900099
    16 sg:pub.10.1007/s00249-007-0197-4
    17 sg:pub.10.1007/s00262-005-0049-y
    18 sg:pub.10.1007/s10517-016-3398-y
    19 sg:pub.10.1007/s11051-011-0642-2
    20 sg:pub.10.1007/s11051-012-1189-6
    21 sg:pub.10.1007/s11051-013-2068-5
    22 sg:pub.10.1007/s11051-015-3191-2
    23 sg:pub.10.1007/s11060-010-0389-0
    24 sg:pub.10.1007/s11095-013-0982-y
    25 sg:pub.10.1038/446381a
    26 sg:pub.10.1038/nature02018
    27 sg:pub.10.1038/nature03808
    28 sg:pub.10.1038/nature05023
    29 sg:pub.10.1038/nature05681
    30 sg:pub.10.1038/nature06410
    31 sg:pub.10.1038/nature06716
    32 sg:pub.10.1038/ncomms2717
    33 sg:pub.10.1038/nmat2591
    34 sg:pub.10.1038/nmat2604
    35 sg:pub.10.1038/nnano.2007.388
    36 sg:pub.10.1038/nnano.2007.418
    37 sg:pub.10.1038/nnano.2008.39
    38 sg:pub.10.1038/nnano.2010.125
    39 sg:pub.10.1038/nprot.2013.056
    40 sg:pub.10.1038/srep02887
    41 sg:pub.10.1038/srep02953
    42 sg:pub.10.1038/srep09090
    43 sg:pub.10.1038/srep25309
    44 sg:pub.10.1038/srep33560
    45 sg:pub.10.1134/1.1130675
    46 sg:pub.10.1134/1.1371366
    47 sg:pub.10.1134/1.1744954
    48 sg:pub.10.1134/s1063783414070142
    49 sg:pub.10.1134/s106378501303005x
    50 sg:pub.10.3103/s1062873813110130
    51 schema:datePublished 2017-02-11
    52 schema:datePublishedReg 2017-02-11
    53 schema:description The scope of this review involves one of the most promising branches of new-generation biomedicine, namely magnetic nanotheranostics using remote control of functionalized magnetic nanoparticles (f-MNPs) by means of alternating magnetic fields (AMFs). The review is mainly focused on new approach which utilizes non-heating low frequency magnetic fields (LFMFs) for nanomechanical actuation of f-MNPs. This approach is compared to such traditional ones as magnetic resonance imaging (MRI) and radio-frequency (RF) magnetic hyperthermia (MH) which utilize high frequency heating AMF. The innovative principles and specific models of non-thermal magnetomechanical actuation of biostructures by MNP rotational oscillations in LFMF are described. The discussed strategy allows biodistribution monitoring in situ, delivering drugs to target tissues and releasing them with controlled rate, controlling biocatalytic reaction kinetics, inducing malignant cell apoptosis, and more. Optimization of both LFMF and f-MNP parameters may lead to dramatic improvement of treatment efficiency, locality, and selectivity on molecular or cellular levels and allow implementing both drug and drugless, i.e., pure nanomechanical therapy, in particular cancer therapy. The optimal parameters within this approach differ significantly from those used in MH or MRI because of the principal difference in the f-MNP actuation modes. It is shown that specifically designed high gradient, steady magnetic field enables diagnostic and therapeutic LFMF impact localization in the deep tissues within the area ranging from a millimeter to a few centimeters and 3D scanning of affected region, if necessary.
    54 schema:genre article
    55 schema:isAccessibleForFree false
    56 schema:isPartOf N7048de8eef3e421e80fb442ea8d2e078
    57 N82b532a4a22e4896af48b9e0eafefc25
    58 sg:journal.1028317
    59 schema:keywords AMF
    60 actuation
    61 actuation modes
    62 apoptosis
    63 approach
    64 area
    65 biomedicine
    66 biostructures
    67 branches
    68 cancer therapy
    69 cell apoptosis
    70 cellular level
    71 centimeters
    72 control
    73 deep tissues
    74 differences
    75 dramatic improvement
    76 drugless
    77 drugs
    78 efficiency
    79 field
    80 frequency magnetic fields
    81 gradient
    82 high gradients
    83 hyperthermia
    84 imaging
    85 impact localization
    86 improvement
    87 innovative principles
    88 kinetics
    89 levels
    90 localities
    91 localization
    92 low frequency magnetic fields
    93 magnetic field
    94 magnetic hyperthermia
    95 magnetic nanoparticles
    96 magnetic nanotheranostics
    97 magnetic resonance imaging
    98 magnetomechanical actuation
    99 malignant cell apoptosis
    100 means
    101 millimeters
    102 mode
    103 model
    104 monitoring
    105 multimodal potential
    106 nanomechanical actuation
    107 nanomedicine
    108 nanoparticles
    109 nanotheranostics
    110 new approach
    111 new-generation nanomedicines
    112 one
    113 optimal parameters
    114 optimization
    115 oscillations
    116 parameters
    117 particular cancer therapies
    118 potential
    119 principal difference
    120 principles
    121 promising branch
    122 rate
    123 reaction kinetics
    124 region
    125 remote control
    126 resonance imaging
    127 review
    128 rotational oscillations
    129 scanning
    130 scope
    131 selectivity
    132 situ
    133 specific model
    134 steady magnetic field
    135 strategies
    136 therapy
    137 tissue
    138 traditional ones
    139 treatment efficiency
    140 schema:name Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine
    141 schema:pagination 63
    142 schema:productId Na06d8a1d7223419aaa002bfeb544730a
    143 Nd6831bf8bd7646868f402e9a45e69f8b
    144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083741566
    145 https://doi.org/10.1007/s11051-017-3746-5
    146 schema:sdDatePublished 2022-08-04T17:04
    147 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    148 schema:sdPublisher Nc6cad7ace47244cc824d4f27d66dd8fb
    149 schema:url https://doi.org/10.1007/s11051-017-3746-5
    150 sgo:license sg:explorer/license/
    151 sgo:sdDataset articles
    152 rdf:type schema:ScholarlyArticle
    153 N3337e9f6612b41f68f1b6cadb40e0d13 rdf:first sg:person.01221266443.08
    154 rdf:rest N8b4d55bcb8554cdd93d0495e598b3f14
    155 N3e3973a87b86477ca15194b3b29af43c rdf:first sg:person.0716744421.40
    156 rdf:rest N902af8697c034005b14d34cf896a40e6
    157 N7048de8eef3e421e80fb442ea8d2e078 schema:volumeNumber 19
    158 rdf:type schema:PublicationVolume
    159 N82b532a4a22e4896af48b9e0eafefc25 schema:issueNumber 2
    160 rdf:type schema:PublicationIssue
    161 N8b4d55bcb8554cdd93d0495e598b3f14 rdf:first sg:person.01200270366.70
    162 rdf:rest N3e3973a87b86477ca15194b3b29af43c
    163 N902af8697c034005b14d34cf896a40e6 rdf:first sg:person.011450571777.27
    164 rdf:rest rdf:nil
    165 Na06d8a1d7223419aaa002bfeb544730a schema:name doi
    166 schema:value 10.1007/s11051-017-3746-5
    167 rdf:type schema:PropertyValue
    168 Nc6cad7ace47244cc824d4f27d66dd8fb schema:name Springer Nature - SN SciGraph project
    169 rdf:type schema:Organization
    170 Nd6831bf8bd7646868f402e9a45e69f8b schema:name dimensions_id
    171 schema:value pub.1083741566
    172 rdf:type schema:PropertyValue
    173 Nf9b21f1ae46141ac8c81f99c72287767 rdf:first sg:person.0637226066.15
    174 rdf:rest N3337e9f6612b41f68f1b6cadb40e0d13
    175 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    176 schema:name Engineering
    177 rdf:type schema:DefinedTerm
    178 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Biomedical Engineering
    180 rdf:type schema:DefinedTerm
    181 sg:grant.4896471 http://pending.schema.org/fundedItem sg:pub.10.1007/s11051-017-3746-5
    182 rdf:type schema:MonetaryGrant
    183 sg:journal.1028317 schema:issn 1388-0764
    184 1572-896X
    185 schema:name Journal of Nanoparticle Research
    186 schema:publisher Springer Nature
    187 rdf:type schema:Periodical
    188 sg:person.011450571777.27 schema:affiliation grid-institutes:grid.10698.36
    189 schema:familyName Kabanov
    190 schema:givenName Alexander V.
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011450571777.27
    192 rdf:type schema:Person
    193 sg:person.01200270366.70 schema:affiliation grid-institutes:grid.35043.31
    194 schema:familyName Majouga
    195 schema:givenName Alexander G.
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200270366.70
    197 rdf:type schema:Person
    198 sg:person.01221266443.08 schema:affiliation grid-institutes:grid.10698.36
    199 schema:familyName Klyachko
    200 schema:givenName Natalia L.
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221266443.08
    202 rdf:type schema:Person
    203 sg:person.0637226066.15 schema:affiliation grid-institutes:grid.35043.31
    204 schema:familyName Golovin
    205 schema:givenName Yuri I.
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637226066.15
    207 rdf:type schema:Person
    208 sg:person.0716744421.40 schema:affiliation grid-institutes:grid.10698.36
    209 schema:familyName Sokolsky
    210 schema:givenName Marina
    211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716744421.40
    212 rdf:type schema:Person
    213 sg:pub.10.1007/978-0-387-49989-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019107935
    214 https://doi.org/10.1007/978-0-387-49989-5
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/978-1-4614-4921-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040856880
    217 https://doi.org/10.1007/978-1-4614-4921-8
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1007/978-1-4939-3634-2_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006142119
    220 https://doi.org/10.1007/978-1-4939-3634-2_6
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1007/978-3-642-04199-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030937560
    223 https://doi.org/10.1007/978-3-642-04199-0
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1007/978-3-642-24133-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028606172
    226 https://doi.org/10.1007/978-3-642-24133-8
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1007/978-3-642-31107-9_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041591022
    229 https://doi.org/10.1007/978-3-642-31107-9_19
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1007/978-3-642-31107-9_29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016751237
    232 https://doi.org/10.1007/978-3-642-31107-9_29
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1007/978-3-642-31107-9_34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003483318
    235 https://doi.org/10.1007/978-3-642-31107-9_34
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1007/978-3-658-01961-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038982989
    238 https://doi.org/10.1007/978-3-658-01961-7
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1007/978-3-662-46224-9_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044435433
    241 https://doi.org/10.1007/978-3-662-46224-9_2
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1007/978-4-431-27914-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014801547
    244 https://doi.org/10.1007/978-4-431-27914-3
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1007/s002329900099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029071099
    247 https://doi.org/10.1007/s002329900099
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s00249-007-0197-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042212097
    250 https://doi.org/10.1007/s00249-007-0197-4
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s00262-005-0049-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045298089
    253 https://doi.org/10.1007/s00262-005-0049-y
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s10517-016-3398-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051259309
    256 https://doi.org/10.1007/s10517-016-3398-y
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1007/s11051-011-0642-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025423820
    259 https://doi.org/10.1007/s11051-011-0642-2
    260 rdf:type schema:CreativeWork
    261 sg:pub.10.1007/s11051-012-1189-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016032100
    262 https://doi.org/10.1007/s11051-012-1189-6
    263 rdf:type schema:CreativeWork
    264 sg:pub.10.1007/s11051-013-2068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050125787
    265 https://doi.org/10.1007/s11051-013-2068-5
    266 rdf:type schema:CreativeWork
    267 sg:pub.10.1007/s11051-015-3191-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003037693
    268 https://doi.org/10.1007/s11051-015-3191-2
    269 rdf:type schema:CreativeWork
    270 sg:pub.10.1007/s11060-010-0389-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053260208
    271 https://doi.org/10.1007/s11060-010-0389-0
    272 rdf:type schema:CreativeWork
    273 sg:pub.10.1007/s11095-013-0982-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1012391846
    274 https://doi.org/10.1007/s11095-013-0982-y
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1038/446381a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017707080
    277 https://doi.org/10.1038/446381a
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1038/nature02018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050186763
    280 https://doi.org/10.1038/nature02018
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1038/nature03808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014309386
    283 https://doi.org/10.1038/nature03808
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1038/nature05023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012273606
    286 https://doi.org/10.1038/nature05023
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1038/nature05681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041564324
    289 https://doi.org/10.1038/nature05681
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1038/nature06410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035333913
    292 https://doi.org/10.1038/nature06410
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1038/nature06716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030840140
    295 https://doi.org/10.1038/nature06716
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/ncomms2717 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018990270
    298 https://doi.org/10.1038/ncomms2717
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nmat2591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004693121
    301 https://doi.org/10.1038/nmat2591
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nmat2604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000314268
    304 https://doi.org/10.1038/nmat2604
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/nnano.2007.388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001285727
    307 https://doi.org/10.1038/nnano.2007.388
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/nnano.2007.418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049627546
    310 https://doi.org/10.1038/nnano.2007.418
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/nnano.2008.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037558548
    313 https://doi.org/10.1038/nnano.2008.39
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/nnano.2010.125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022012087
    316 https://doi.org/10.1038/nnano.2010.125
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/nprot.2013.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053229914
    319 https://doi.org/10.1038/nprot.2013.056
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/srep02887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022777257
    322 https://doi.org/10.1038/srep02887
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/srep02953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038036933
    325 https://doi.org/10.1038/srep02953
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/srep09090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042538121
    328 https://doi.org/10.1038/srep09090
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/srep25309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004272211
    331 https://doi.org/10.1038/srep25309
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/srep33560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048374912
    334 https://doi.org/10.1038/srep33560
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1134/1.1130675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034935430
    337 https://doi.org/10.1134/1.1130675
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1134/1.1371366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024481664
    340 https://doi.org/10.1134/1.1371366
    341 rdf:type schema:CreativeWork
    342 sg:pub.10.1134/1.1744954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019837539
    343 https://doi.org/10.1134/1.1744954
    344 rdf:type schema:CreativeWork
    345 sg:pub.10.1134/s1063783414070142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050613345
    346 https://doi.org/10.1134/s1063783414070142
    347 rdf:type schema:CreativeWork
    348 sg:pub.10.1134/s106378501303005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050945923
    349 https://doi.org/10.1134/s106378501303005x
    350 rdf:type schema:CreativeWork
    351 sg:pub.10.3103/s1062873813110130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031335821
    352 https://doi.org/10.3103/s1062873813110130
    353 rdf:type schema:CreativeWork
    354 grid-institutes:grid.10698.36 schema:alternateName Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
    355 schema:name Center for Nanotechnology in Drug Delivery, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 27599, Chapel Hill, NC, USA
    356 Chemistry Faculty, M.V. Lomonosov Moscow State University, 1-11, Leninsky Gory, Moscow, Russia
    357 National Research Technological University “MISIS”, 4, Leninsky Ave., Moscow, Russia
    358 rdf:type schema:Organization
    359 grid-institutes:grid.35043.31 schema:alternateName National Research Technological University “MISIS”, 4, Leninsky Ave., Moscow, Russia
    360 schema:name Chemistry Faculty, M.V. Lomonosov Moscow State University, 1-11, Leninsky Gory, Moscow, Russia
    361 G.R. Derzhavin Tambov State University, Nanocenter, 33, Internatsionalnaya St., Tambov, Russia
    362 National Research Technological University “MISIS”, 4, Leninsky Ave., Moscow, Russia
    363 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...