Patent citation network in nanotechnology (1976–2004) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-06

AUTHORS

Xin Li, Hsinchun Chen, Zan Huang, Mihail C. Roco

ABSTRACT

The patent citation networks are described using critical node, core network, and network topological analysis. The main objective is understanding of the knowledge transfer processes between technical fields, institutions and countries. This includes identifying key influential players and subfields, the knowledge transfer patterns among them, and the overall knowledge transfer efficiency. The proposed framework is applied to the field of nanoscale science and engineering (NSE), including the citation networks of patent documents, submitting institutions, technology fields, and countries. The NSE patents were identified by keywords “full-text” searching of patents at the United States Patent and Trademark Office (USPTO). The analysis shows that the United States is the most important citation center in NSE research. The institution citation network illustrates a more efficient knowledge transfer between institutions than a random network. The country citation network displays a knowledge transfer capability as efficient as a random network. The technology field citation network and the patent document citation network exhibit a␣less efficient knowledge diffusion capability than a random network. All four citation networks show a tendency to form local citation clusters. More... »

PAGES

337-352

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11051-006-9194-2

DOI

http://dx.doi.org/10.1007/s11051-006-9194-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043296066


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Artificial Intelligence Lab, Department of Management Information Systems, Eller College of Management, The University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xin", 
        "id": "sg:person.015365457361.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365457361.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Arizona", 
          "id": "https://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Artificial Intelligence Lab, Department of Management Information Systems, Eller College of Management, The University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Hsinchun", 
        "id": "sg:person.01320367405.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320367405.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pennsylvania State University", 
          "id": "https://www.grid.ac/institutes/grid.29857.31", 
          "name": [
            "Department of Supply Chain and Information Systems, Smeal College of Business, The Pennsylvania State University, 16802, University Park, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Zan", 
        "id": "sg:person.010126250665.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126250665.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Science Foundation", 
          "id": "https://www.grid.ac/institutes/grid.431093.c", 
          "name": [
            "National Science Foundation, 4201 Wilson Blvd, 22230, Arlington, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roco", 
        "givenName": "Mihail C.", 
        "id": "sg:person.0653064203.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653064203.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jedc.2003.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001376226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-004-4117-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001953280", 
          "https://doi.org/10.1007/s11051-004-4117-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0172-2190(97)00033-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002866778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.74.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010080128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011815659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00191-004-0211-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015207722", 
          "https://doi.org/10.1007/s00191-004-0211-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.036106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017294308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.036106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017294308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510050359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020100757", 
          "https://doi.org/10.1007/s100510050359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010572914033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020755672", 
          "https://doi.org/10.1023/a:1010572914033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02017219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022737488", 
          "https://doi.org/10.1007/bf02017219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02017219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022737488", 
          "https://doi.org/10.1007/bf02017219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026232526034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030441240", 
          "https://doi.org/10.1023/a:1026232526034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1005692621105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034183528", 
          "https://doi.org/10.1023/a:1005692621105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:scie.0000018528.59913.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036416248", 
          "https://doi.org/10.1023/b:scie.0000018528.59913.48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1025556800994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044551537", 
          "https://doi.org/10.1023/a:1025556800994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:scie.0000006876.29052.bf", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044699863", 
          "https://doi.org/10.1023/b:scie.0000006876.29052.bf"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gut.43.2.288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051736267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/17.206656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061098049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2139/ssrn.431872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102197483"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-06", 
    "datePublishedReg": "2007-06-01", 
    "description": "The patent citation networks are described using critical node, core network, and network topological analysis. The main objective is understanding of the knowledge transfer processes between technical fields, institutions and countries. This includes identifying key influential players and subfields, the knowledge transfer patterns among them, and the overall knowledge transfer efficiency. The proposed framework is applied to the field of nanoscale science and engineering (NSE), including the citation networks of patent documents, submitting institutions, technology fields, and countries. The NSE patents were identified by keywords \u201cfull-text\u201d searching of patents at the United States Patent and Trademark Office (USPTO). The analysis shows that the United States is the most important citation center in NSE research. The institution citation network illustrates a more efficient knowledge transfer between institutions than a random network. The country citation network displays a knowledge transfer capability as efficient as a random network. The technology field citation network and the patent document citation network exhibit a\u2423less efficient knowledge diffusion capability than a random network. All four citation networks show a tendency to form local citation clusters.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11051-006-9194-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3061909", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2991724", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1028317", 
        "issn": [
          "1388-0764", 
          "1572-896X"
        ], 
        "name": "Journal of Nanoparticle Research", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Patent citation network in nanotechnology (1976\u20132004)", 
    "pagination": "337-352", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ce3c3185ebb657368bd649f45c23817cb3eee5a60a1b68fd9e5925e309c20f22"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11051-006-9194-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043296066"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11051-006-9194-2", 
      "https://app.dimensions.ai/details/publication/pub.1043296066"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11051-006-9194-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11051-006-9194-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11051-006-9194-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11051-006-9194-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11051-006-9194-2'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11051-006-9194-2 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N62d835e3a5294464bd28e6f87d2053e6
4 schema:citation sg:pub.10.1007/bf02017219
5 sg:pub.10.1007/s00191-004-0211-2
6 sg:pub.10.1007/s100510050359
7 sg:pub.10.1007/s11051-004-4117-6
8 sg:pub.10.1023/a:1005692621105
9 sg:pub.10.1023/a:1010572914033
10 sg:pub.10.1023/a:1025556800994
11 sg:pub.10.1023/a:1026232526034
12 sg:pub.10.1023/b:scie.0000006876.29052.bf
13 sg:pub.10.1023/b:scie.0000018528.59913.48
14 sg:pub.10.1038/30918
15 https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n
16 https://doi.org/10.1016/j.jedc.2003.04.002
17 https://doi.org/10.1016/s0172-2190(97)00033-1
18 https://doi.org/10.1103/physreve.64.036106
19 https://doi.org/10.1103/revmodphys.74.47
20 https://doi.org/10.1109/17.206656
21 https://doi.org/10.1126/science.286.5439.509
22 https://doi.org/10.1136/gut.43.2.288
23 https://doi.org/10.2139/ssrn.431872
24 schema:datePublished 2007-06
25 schema:datePublishedReg 2007-06-01
26 schema:description The patent citation networks are described using critical node, core network, and network topological analysis. The main objective is understanding of the knowledge transfer processes between technical fields, institutions and countries. This includes identifying key influential players and subfields, the knowledge transfer patterns among them, and the overall knowledge transfer efficiency. The proposed framework is applied to the field of nanoscale science and engineering (NSE), including the citation networks of patent documents, submitting institutions, technology fields, and countries. The NSE patents were identified by keywords “full-text” searching of patents at the United States Patent and Trademark Office (USPTO). The analysis shows that the United States is the most important citation center in NSE research. The institution citation network illustrates a more efficient knowledge transfer between institutions than a random network. The country citation network displays a knowledge transfer capability as efficient as a random network. The technology field citation network and the patent document citation network exhibit a␣less efficient knowledge diffusion capability than a random network. All four citation networks show a tendency to form local citation clusters.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N6c599c5f9f34499ab9094711fba89b58
31 Nff18ac3fdd064eb2ac616956c166c838
32 sg:journal.1028317
33 schema:name Patent citation network in nanotechnology (1976–2004)
34 schema:pagination 337-352
35 schema:productId N1550f97ccdac4255924551888c3b3a46
36 N272b5acb633948549bfc3dda929c431b
37 Nd5d547ad470a498e8c046fbb5862b888
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043296066
39 https://doi.org/10.1007/s11051-006-9194-2
40 schema:sdDatePublished 2019-04-11T02:02
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N7122e469af4440c695e25a835ca7148e
43 schema:url http://link.springer.com/10.1007%2Fs11051-006-9194-2
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N1550f97ccdac4255924551888c3b3a46 schema:name dimensions_id
48 schema:value pub.1043296066
49 rdf:type schema:PropertyValue
50 N272b5acb633948549bfc3dda929c431b schema:name doi
51 schema:value 10.1007/s11051-006-9194-2
52 rdf:type schema:PropertyValue
53 N62d835e3a5294464bd28e6f87d2053e6 rdf:first sg:person.015365457361.68
54 rdf:rest Nc505e14b4e11409ea15c71234567efb3
55 N6c599c5f9f34499ab9094711fba89b58 schema:issueNumber 3
56 rdf:type schema:PublicationIssue
57 N7122e469af4440c695e25a835ca7148e schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nba616ec7afce4aceb44d11bc9b8b46c3 rdf:first sg:person.010126250665.75
60 rdf:rest Nfc44b6e406c9407bb120b53b71ec9a74
61 Nc505e14b4e11409ea15c71234567efb3 rdf:first sg:person.01320367405.07
62 rdf:rest Nba616ec7afce4aceb44d11bc9b8b46c3
63 Nd5d547ad470a498e8c046fbb5862b888 schema:name readcube_id
64 schema:value ce3c3185ebb657368bd649f45c23817cb3eee5a60a1b68fd9e5925e309c20f22
65 rdf:type schema:PropertyValue
66 Nfc44b6e406c9407bb120b53b71ec9a74 rdf:first sg:person.0653064203.62
67 rdf:rest rdf:nil
68 Nff18ac3fdd064eb2ac616956c166c838 schema:volumeNumber 9
69 rdf:type schema:PublicationVolume
70 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
71 schema:name Economics
72 rdf:type schema:DefinedTerm
73 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
74 schema:name Applied Economics
75 rdf:type schema:DefinedTerm
76 sg:grant.2991724 http://pending.schema.org/fundedItem sg:pub.10.1007/s11051-006-9194-2
77 rdf:type schema:MonetaryGrant
78 sg:grant.3061909 http://pending.schema.org/fundedItem sg:pub.10.1007/s11051-006-9194-2
79 rdf:type schema:MonetaryGrant
80 sg:journal.1028317 schema:issn 1388-0764
81 1572-896X
82 schema:name Journal of Nanoparticle Research
83 rdf:type schema:Periodical
84 sg:person.010126250665.75 schema:affiliation https://www.grid.ac/institutes/grid.29857.31
85 schema:familyName Huang
86 schema:givenName Zan
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126250665.75
88 rdf:type schema:Person
89 sg:person.01320367405.07 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
90 schema:familyName Chen
91 schema:givenName Hsinchun
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320367405.07
93 rdf:type schema:Person
94 sg:person.015365457361.68 schema:affiliation https://www.grid.ac/institutes/grid.134563.6
95 schema:familyName Li
96 schema:givenName Xin
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015365457361.68
98 rdf:type schema:Person
99 sg:person.0653064203.62 schema:affiliation https://www.grid.ac/institutes/grid.431093.c
100 schema:familyName Roco
101 schema:givenName Mihail C.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653064203.62
103 rdf:type schema:Person
104 sg:pub.10.1007/bf02017219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022737488
105 https://doi.org/10.1007/bf02017219
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s00191-004-0211-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015207722
108 https://doi.org/10.1007/s00191-004-0211-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s100510050359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020100757
111 https://doi.org/10.1007/s100510050359
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11051-004-4117-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001953280
114 https://doi.org/10.1007/s11051-004-4117-6
115 rdf:type schema:CreativeWork
116 sg:pub.10.1023/a:1005692621105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034183528
117 https://doi.org/10.1023/a:1005692621105
118 rdf:type schema:CreativeWork
119 sg:pub.10.1023/a:1010572914033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020755672
120 https://doi.org/10.1023/a:1010572914033
121 rdf:type schema:CreativeWork
122 sg:pub.10.1023/a:1025556800994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044551537
123 https://doi.org/10.1023/a:1025556800994
124 rdf:type schema:CreativeWork
125 sg:pub.10.1023/a:1026232526034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030441240
126 https://doi.org/10.1023/a:1026232526034
127 rdf:type schema:CreativeWork
128 sg:pub.10.1023/b:scie.0000006876.29052.bf schema:sameAs https://app.dimensions.ai/details/publication/pub.1044699863
129 https://doi.org/10.1023/b:scie.0000006876.29052.bf
130 rdf:type schema:CreativeWork
131 sg:pub.10.1023/b:scie.0000018528.59913.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036416248
132 https://doi.org/10.1023/b:scie.0000018528.59913.48
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
135 https://doi.org/10.1038/30918
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/1097-024x(200009)30:11<1203::aid-spe338>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1011815659
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jedc.2003.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001376226
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0172-2190(97)00033-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002866778
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physreve.64.036106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017294308
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/17.206656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061098049
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1136/gut.43.2.288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051736267
152 rdf:type schema:CreativeWork
153 https://doi.org/10.2139/ssrn.431872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102197483
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.134563.6 schema:alternateName University of Arizona
156 schema:name Artificial Intelligence Lab, Department of Management Information Systems, Eller College of Management, The University of Arizona, 85721, Tucson, AZ, USA
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.29857.31 schema:alternateName Pennsylvania State University
159 schema:name Department of Supply Chain and Information Systems, Smeal College of Business, The Pennsylvania State University, 16802, University Park, PA, USA
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.431093.c schema:alternateName National Science Foundation
162 schema:name National Science Foundation, 4201 Wilson Blvd, 22230, Arlington, VA, USA
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...