High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-10-18

AUTHORS

Li Wang, Chunzhong Li, Mamoru Senna

ABSTRACT

Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA–SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to␣whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic–organic interfacial adhesion. The newly developed HA–SF composites are expected to be attractive biomedical materials for bone repair and remodeling. More... »

PAGES

919-929

References to SciGraph publications

  • 1994-09. Effect of macrotexture produced by laser beam machining on the retention of ceramics implant in bone in vivo in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE
  • 2002-10. The cross-linkage effect of hydroxyapatite/collagen nanocomposites on a self-organization phenomenon in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE
  • 2002-06. Self-assembly phenomenon of hydroxyapatite nanocrystals on chondroitin sulfate in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE
  • 1990-06. Microhardness and Young's modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE
  • 1996-07. Synthesis of inorganic materials with complex form in NATURE
  • 1994-05. Preparation and characterization of nanograde osteoapatite-like rod crystals in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE
  • 2004-01. Nano-scaled hydroxyapatite/polymer composite I. Coating of sintered hydroxyapatite particles on poly(γ-methacryloxypropyl trimethoxysilane)-grafted silk fibroin fibers through chemical bonding in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE
  • 2005-01. Nano-scaled hydroxyapatite/polymer composite III. Coating of sintered hydroxyapatite particles on poly(4-methacryloyloxyethyl trimellitate anhydride)-grafted silk fibroin fibers in JOURNAL OF MATERIALS SCIENCE: MATERIALS IN MEDICINE
  • 2002-12. Microstructure and Chemical States of Hydroxyapatite/silk Fibroin Nanocomposites Synthesized via A Wet-mechanochemical Route in JOURNAL OF NANOPARTICLE RESEARCH
  • 2003-09. Hydroxyapatite filled chitosan-polyacrylic acid polyelectrolyte complexes in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11051-006-9167-5

    DOI

    http://dx.doi.org/10.1007/s11051-006-9167-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046450763


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, 200237, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.28056.39", 
              "name": [
                "Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, 200237, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Li", 
            "id": "sg:person.015712277015.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015712277015.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, 200237, Shanghai, China", 
              "id": "http://www.grid.ac/institutes/grid.28056.39", 
              "name": [
                "Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, 200237, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Chunzhong", 
            "id": "sg:person.01232001611.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232001611.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Yokohama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26091.3c", 
              "name": [
                "Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Senna", 
            "givenName": "Mamoru", 
            "id": "sg:person.011363404413.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363404413.06"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1019825132610", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030156296", 
              "https://doi.org/10.1023/a:1019825132610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00705352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046141454", 
              "https://doi.org/10.1007/bf00705352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1025689701309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002942559", 
              "https://doi.org/10.1023/a:1025689701309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/382313a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008147902", 
              "https://doi.org/10.1038/382313a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00122393", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047643752", 
              "https://doi.org/10.1007/bf00122393"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1015135112302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051312306", 
              "https://doi.org/10.1023/a:1015135112302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00120372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003451150", 
              "https://doi.org/10.1007/bf00120372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1022841507932", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051218039", 
              "https://doi.org/10.1023/a:1022841507932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10856-005-6448-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009281491", 
              "https://doi.org/10.1007/s10856-005-6448-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:jmsm.0000010093.39298.5a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006381291", 
              "https://doi.org/10.1023/b:jmsm.0000010093.39298.5a"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-10-18", 
        "datePublishedReg": "2006-10-18", 
        "description": "Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA\u2013SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to\u2423whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic\u2013organic interfacial adhesion. The newly developed HA\u2013SF composites are expected to be attractive biomedical materials for bone repair and remodeling.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11051-006-9167-5", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8141740", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4923230", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1028317", 
            "issn": [
              "1388-0764", 
              "1572-896X"
            ], 
            "name": "Journal of Nanoparticle Research", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "keywords": [
          "silk fibroin", 
          "attractive biomedical materials", 
          "uniform pore size distribution", 
          "three-dimensional porous network", 
          "strong chemical interaction", 
          "pore size distribution", 
          "organic matrix", 
          "co-precipitation method", 
          "interfacial adhesion", 
          "hierarchical microstructure", 
          "biomedical materials", 
          "porous network", 
          "chemical interaction", 
          "composites", 
          "physicochemical properties", 
          "alkali solution", 
          "hydroxyapatite nanoparticles", 
          "fibroin", 
          "size distribution", 
          "microstructure", 
          "crystal growth", 
          "preferential growth", 
          "c-axis", 
          "bone repair", 
          "alkali pretreatment", 
          "kind of pretreatment", 
          "enzyme pretreatment", 
          "microhardness", 
          "nanocomposites", 
          "nanoparticles", 
          "matrix", 
          "epitaxy", 
          "obvious change", 
          "interface", 
          "materials", 
          "enzyme", 
          "properties", 
          "morphology", 
          "HA", 
          "adhesion", 
          "minerals", 
          "formation", 
          "solution", 
          "high degree", 
          "influence", 
          "interaction", 
          "method", 
          "integration", 
          "distribution", 
          "pretreatment", 
          "kind", 
          "results", 
          "network", 
          "samples", 
          "growth", 
          "degree", 
          "changes", 
          "repair", 
          "remodeling", 
          "organization"
        ], 
        "name": "High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin", 
        "pagination": "919-929", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046450763"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11051-006-9167-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11051-006-9167-5", 
          "https://app.dimensions.ai/details/publication/pub.1046450763"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_420.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11051-006-9167-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11051-006-9167-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11051-006-9167-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11051-006-9167-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11051-006-9167-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    178 TRIPLES      21 PREDICATES      94 URIs      76 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11051-006-9167-5 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N83468a3a4a124daf81dff81212a695db
    4 schema:citation sg:pub.10.1007/bf00120372
    5 sg:pub.10.1007/bf00122393
    6 sg:pub.10.1007/bf00705352
    7 sg:pub.10.1007/s10856-005-6448-y
    8 sg:pub.10.1023/a:1015135112302
    9 sg:pub.10.1023/a:1019825132610
    10 sg:pub.10.1023/a:1022841507932
    11 sg:pub.10.1023/a:1025689701309
    12 sg:pub.10.1023/b:jmsm.0000010093.39298.5a
    13 sg:pub.10.1038/382313a0
    14 schema:datePublished 2006-10-18
    15 schema:datePublishedReg 2006-10-18
    16 schema:description Hydroxyapatite (HA)-based nanocomposites were prepared by a co-precipitation method with silk fibroin (SF) serving as organic matrix. Silk fibroin was chemically modified with an alkali solution or an enzyme attempting to improve the interface between the mineral and the organic matrix. The influences of the alkali and enzyme pretreatments on microstructure and physicochemical properties of HA–SF composite were examined and compared. The results reveal that both the two kinds of pretreatments facilitate the formation of highly ordered three-dimensional porous network throughout the composites, increase the microhardness of the composite, and promote the preferential growth of HA crystallites along c-axis. Among all the as-prepared samples, the composite containing the enzyme pretreated SF shows desirable hierarchical microstructure with higher degree of organization and more uniform pore size distribution. Due to the enzyme pretreatment, HA crystallites undergo obvious changes in morphology from rod-like to␣whisker-like and in crystal growth towards more apparent epitaxy along c-axis. The alkali pretreatment induces the stronger chemical interactions between HA and SF and thus to strengthen the inorganic–organic interfacial adhesion. The newly developed HA–SF composites are expected to be attractive biomedical materials for bone repair and remodeling.
    17 schema:genre article
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N029471a4b2d945ba9be07016a07ac571
    20 Nb58f8707d8094bc7bb2c3982b10f3ec9
    21 sg:journal.1028317
    22 schema:keywords HA
    23 adhesion
    24 alkali pretreatment
    25 alkali solution
    26 attractive biomedical materials
    27 biomedical materials
    28 bone repair
    29 c-axis
    30 changes
    31 chemical interaction
    32 co-precipitation method
    33 composites
    34 crystal growth
    35 degree
    36 distribution
    37 enzyme
    38 enzyme pretreatment
    39 epitaxy
    40 fibroin
    41 formation
    42 growth
    43 hierarchical microstructure
    44 high degree
    45 hydroxyapatite nanoparticles
    46 influence
    47 integration
    48 interaction
    49 interface
    50 interfacial adhesion
    51 kind
    52 kind of pretreatment
    53 materials
    54 matrix
    55 method
    56 microhardness
    57 microstructure
    58 minerals
    59 morphology
    60 nanocomposites
    61 nanoparticles
    62 network
    63 obvious change
    64 organic matrix
    65 organization
    66 physicochemical properties
    67 pore size distribution
    68 porous network
    69 preferential growth
    70 pretreatment
    71 properties
    72 remodeling
    73 repair
    74 results
    75 samples
    76 silk fibroin
    77 size distribution
    78 solution
    79 strong chemical interaction
    80 three-dimensional porous network
    81 uniform pore size distribution
    82 schema:name High-affinity integration of hydroxyapatite nanoparticles with chemically modified silk fibroin
    83 schema:pagination 919-929
    84 schema:productId N44f03d38187e4c92b95196b1fa663341
    85 N9392058034d04a8096ae2a1fb3a84fce
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046450763
    87 https://doi.org/10.1007/s11051-006-9167-5
    88 schema:sdDatePublished 2022-10-01T06:33
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher Nc1f11dffa94a4cf295b4404cfe52e55a
    91 schema:url https://doi.org/10.1007/s11051-006-9167-5
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N029471a4b2d945ba9be07016a07ac571 schema:issueNumber 5
    96 rdf:type schema:PublicationIssue
    97 N44f03d38187e4c92b95196b1fa663341 schema:name dimensions_id
    98 schema:value pub.1046450763
    99 rdf:type schema:PropertyValue
    100 N83468a3a4a124daf81dff81212a695db rdf:first sg:person.015712277015.22
    101 rdf:rest Nb4dcee1e31e64299828eb1e7b5318408
    102 N9392058034d04a8096ae2a1fb3a84fce schema:name doi
    103 schema:value 10.1007/s11051-006-9167-5
    104 rdf:type schema:PropertyValue
    105 Nb4dcee1e31e64299828eb1e7b5318408 rdf:first sg:person.01232001611.48
    106 rdf:rest Nc29d88d47e3f4480b1baa6273d51cf6a
    107 Nb58f8707d8094bc7bb2c3982b10f3ec9 schema:volumeNumber 9
    108 rdf:type schema:PublicationVolume
    109 Nc1f11dffa94a4cf295b4404cfe52e55a schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 Nc29d88d47e3f4480b1baa6273d51cf6a rdf:first sg:person.011363404413.06
    112 rdf:rest rdf:nil
    113 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Engineering
    115 rdf:type schema:DefinedTerm
    116 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    117 schema:name Materials Engineering
    118 rdf:type schema:DefinedTerm
    119 sg:grant.4923230 http://pending.schema.org/fundedItem sg:pub.10.1007/s11051-006-9167-5
    120 rdf:type schema:MonetaryGrant
    121 sg:grant.8141740 http://pending.schema.org/fundedItem sg:pub.10.1007/s11051-006-9167-5
    122 rdf:type schema:MonetaryGrant
    123 sg:journal.1028317 schema:issn 1388-0764
    124 1572-896X
    125 schema:name Journal of Nanoparticle Research
    126 schema:publisher Springer Nature
    127 rdf:type schema:Periodical
    128 sg:person.011363404413.06 schema:affiliation grid-institutes:grid.26091.3c
    129 schema:familyName Senna
    130 schema:givenName Mamoru
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363404413.06
    132 rdf:type schema:Person
    133 sg:person.01232001611.48 schema:affiliation grid-institutes:grid.28056.39
    134 schema:familyName Li
    135 schema:givenName Chunzhong
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232001611.48
    137 rdf:type schema:Person
    138 sg:person.015712277015.22 schema:affiliation grid-institutes:grid.28056.39
    139 schema:familyName Wang
    140 schema:givenName Li
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015712277015.22
    142 rdf:type schema:Person
    143 sg:pub.10.1007/bf00120372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003451150
    144 https://doi.org/10.1007/bf00120372
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/bf00122393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047643752
    147 https://doi.org/10.1007/bf00122393
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf00705352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046141454
    150 https://doi.org/10.1007/bf00705352
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/s10856-005-6448-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1009281491
    153 https://doi.org/10.1007/s10856-005-6448-y
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1023/a:1015135112302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051312306
    156 https://doi.org/10.1023/a:1015135112302
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1023/a:1019825132610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030156296
    159 https://doi.org/10.1023/a:1019825132610
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1023/a:1022841507932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051218039
    162 https://doi.org/10.1023/a:1022841507932
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1023/a:1025689701309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002942559
    165 https://doi.org/10.1023/a:1025689701309
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1023/b:jmsm.0000010093.39298.5a schema:sameAs https://app.dimensions.ai/details/publication/pub.1006381291
    168 https://doi.org/10.1023/b:jmsm.0000010093.39298.5a
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1038/382313a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008147902
    171 https://doi.org/10.1038/382313a0
    172 rdf:type schema:CreativeWork
    173 grid-institutes:grid.26091.3c schema:alternateName Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Yokohama, Japan
    174 schema:name Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, 223-8522, Yokohama, Japan
    175 rdf:type schema:Organization
    176 grid-institutes:grid.28056.39 schema:alternateName Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, 200237, Shanghai, China
    177 schema:name Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, 200237, Shanghai, China
    178 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...