A proposal of quantum data representation to improve the discrimination power View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-25

AUTHORS

Rosilda B. de Sousa, Emeson J. S. Pereira, Marina P. Cipolletti, Tiago A. E. Ferreira

ABSTRACT

This work proposes a quantum representation for improvement of data discrimination power, transforming a non linearly separable problem into a linearly separable problem. This methodology proposed here can be naturally employed as data preprocessing for classification task. A classical real world system will be viewed as a composition of quantum systems, where any observable measurement process of the real world data are created from an expected value measure of a quantum system state. In this projection measure a quantum phase information is naturally lost, making the inverse mapping from the classical space into quantum space impossible. However, it is possible find an arbitrate quantum state that represents the same classical information originally measured. A genetic algorithm is employed for search this arbitrate quantum state, going back from classical world to quantum world representation. The genetic algorithm searches for a compatible quantum state with the real world data, where the lost quantum phase is adjusted with the constraints to minimize the classes’ variance and to maximize the distance between the classes’ centroids. Computational simulations shown that the proposed methodology was able to transform a non linearly separable problem in classical representation space into a linearly separable problem in the quantum representation space, demonstrating an enhancement of data discrimination power. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11047-019-09734-w

DOI

http://dx.doi.org/10.1007/s11047-019-09734-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112386067


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universidade Federal do Cariri", 
          "id": "https://www.grid.ac/institutes/grid.460085.f", 
          "name": [
            "Centro de Ci\u00eancias e Tecnologia, Universidade Federal do Cariri, 63048-080, Cear\u00e1, Juazeiro do Norte, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sousa", 
        "givenName": "Rosilda B. de", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Rural University of Pernambuco", 
          "id": "https://www.grid.ac/institutes/grid.411177.5", 
          "name": [
            "Departamento de Estat\u00edstica e Inform\u00e1tica, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pereira", 
        "givenName": "Emeson J. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universidad Nacional del Sur", 
          "id": "https://www.grid.ac/institutes/grid.412236.0", 
          "name": [
            "Centro Cient\u00edfico Tecnologico - CONICET, Universidad Nacional Del Sur, 8000FTN, Bah\u00eda Blanca, Argentina"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cipolletti", 
        "givenName": "Marina P.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Rural University of Pernambuco", 
          "id": "https://www.grid.ac/institutes/grid.411177.5", 
          "name": [
            "Departamento de Estat\u00edstica e Inform\u00e1tica, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferreira", 
        "givenName": "Tiago A. E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1109/tnn.2005.845141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002360675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.845141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002360675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-016-9554-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002724329", 
          "https://doi.org/10.1007/s11047-016-9554-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-016-9554-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002724329", 
          "https://doi.org/10.1007/s11047-016-9554-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2015.09.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004391600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2013.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009282790"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.knosys.2014.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013606780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-008-9085-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015391604", 
          "https://doi.org/10.1007/s11063-008-9085-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-015-9495-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016057181", 
          "https://doi.org/10.1007/s11047-015-9495-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2012.07.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018536441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.08.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026523553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-007-0114-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032043586", 
          "https://doi.org/10.1007/s10115-007-0114-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10115-007-0114-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032043586", 
          "https://doi.org/10.1007/s10115-007-0114-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2010.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034384707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2016.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039670787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-014-9470-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053050441", 
          "https://doi.org/10.1007/s11047-014-9470-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/pgec.1965.264137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061435370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1967.1053964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061646286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2009.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2002.804317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnn.2005.860871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061716965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmca.2008.923034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061795447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cta.2332", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084011023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-017-0894-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084024859", 
          "https://doi.org/10.1007/s10489-017-0894-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-017-0894-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084024859", 
          "https://doi.org/10.1007/s10489-017-0894-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2017.02.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084100922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2017.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084101016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2017.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084526005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tfuzz.2017.2659764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086111691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-017-0972-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090611541", 
          "https://doi.org/10.1007/s10489-017-0972-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10489-017-0972-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090611541", 
          "https://doi.org/10.1007/s10489-017-0972-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2017.2739807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091268290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2017.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091818932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jocs.2017.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091883867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2017.11.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093136706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icaict.2011.6110912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095335382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2017.2782884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099742192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/comst.2017.2786748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100168901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2018.01.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100813586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2018.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101780481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118337462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106820369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118337462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106820369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11047-018-9711-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107105882", 
          "https://doi.org/10.1007/s11047-018-9711-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/fio.2018.fth1b.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107518189"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-25", 
    "datePublishedReg": "2019-02-25", 
    "description": "This work proposes a quantum representation for improvement of data discrimination power, transforming a non linearly separable problem into a linearly separable problem. This methodology proposed here can be naturally employed as data preprocessing for classification task. A classical real world system will be viewed as a composition of quantum systems, where any observable measurement process of the real world data are created from an expected value measure of a quantum system state. In this projection measure a quantum phase information is naturally lost, making the inverse mapping from the classical space into quantum space impossible. However, it is possible find an arbitrate quantum state that represents the same classical information originally measured. A genetic algorithm is employed for search this arbitrate quantum state, going back from classical world to quantum world representation. The genetic algorithm searches for a compatible quantum state with the real world data, where the lost quantum phase is adjusted with the constraints to minimize the classes\u2019 variance and to maximize the distance between the classes\u2019 centroids. Computational simulations shown that the proposed methodology was able to transform a non linearly separable problem in classical representation space into a linearly separable problem in the quantum representation space, demonstrating an enhancement of data discrimination power.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11047-019-09734-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033918", 
        "issn": [
          "1567-7818", 
          "1572-9796"
        ], 
        "name": "Natural Computing", 
        "type": "Periodical"
      }
    ], 
    "name": "A proposal of quantum data representation to improve the discrimination power", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d3e531882c5b6dbdd211f6b4893d08dc1200269f1e2bd8f32a9f6dd9ad87b382"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11047-019-09734-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112386067"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11047-019-09734-w", 
      "https://app.dimensions.ai/details/publication/pub.1112386067"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89812_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11047-019-09734-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11047-019-09734-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11047-019-09734-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11047-019-09734-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11047-019-09734-w'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      62 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11047-019-09734-w schema:about anzsrc-for:02
2 anzsrc-for:0206
3 schema:author N140ed96611654d7c9094e4d93a61546d
4 schema:citation sg:pub.10.1007/s10115-007-0114-2
5 sg:pub.10.1007/s10489-017-0894-3
6 sg:pub.10.1007/s10489-017-0972-6
7 sg:pub.10.1007/s11047-014-9470-5
8 sg:pub.10.1007/s11047-015-9495-4
9 sg:pub.10.1007/s11047-016-9554-5
10 sg:pub.10.1007/s11047-018-9711-0
11 sg:pub.10.1007/s11063-008-9085-x
12 https://doi.org/10.1002/9781118337462
13 https://doi.org/10.1002/cta.2332
14 https://doi.org/10.1016/j.eswa.2013.02.025
15 https://doi.org/10.1016/j.eswa.2017.04.003
16 https://doi.org/10.1016/j.eswa.2017.11.058
17 https://doi.org/10.1016/j.jocs.2017.09.008
18 https://doi.org/10.1016/j.knosys.2014.07.009
19 https://doi.org/10.1016/j.neucom.2010.06.024
20 https://doi.org/10.1016/j.neucom.2017.09.026
21 https://doi.org/10.1016/j.patcog.2012.07.009
22 https://doi.org/10.1016/j.patcog.2015.09.025
23 https://doi.org/10.1016/j.patcog.2016.08.010
24 https://doi.org/10.1016/j.patcog.2016.11.003
25 https://doi.org/10.1016/j.patcog.2017.02.036
26 https://doi.org/10.1016/j.patcog.2018.01.014
27 https://doi.org/10.1016/j.patrec.2017.03.025
28 https://doi.org/10.1016/j.patrec.2018.03.023
29 https://doi.org/10.1109/access.2017.2739807
30 https://doi.org/10.1109/access.2017.2782884
31 https://doi.org/10.1109/comst.2017.2786748
32 https://doi.org/10.1109/icaict.2011.6110912
33 https://doi.org/10.1109/pgec.1965.264137
34 https://doi.org/10.1109/tfuzz.2017.2659764
35 https://doi.org/10.1109/tit.1967.1053964
36 https://doi.org/10.1109/tkde.2009.110
37 https://doi.org/10.1109/tnn.2002.804317
38 https://doi.org/10.1109/tnn.2005.845141
39 https://doi.org/10.1109/tnn.2005.860871
40 https://doi.org/10.1109/tsmca.2008.923034
41 https://doi.org/10.1364/fio.2018.fth1b.3
42 schema:datePublished 2019-02-25
43 schema:datePublishedReg 2019-02-25
44 schema:description This work proposes a quantum representation for improvement of data discrimination power, transforming a non linearly separable problem into a linearly separable problem. This methodology proposed here can be naturally employed as data preprocessing for classification task. A classical real world system will be viewed as a composition of quantum systems, where any observable measurement process of the real world data are created from an expected value measure of a quantum system state. In this projection measure a quantum phase information is naturally lost, making the inverse mapping from the classical space into quantum space impossible. However, it is possible find an arbitrate quantum state that represents the same classical information originally measured. A genetic algorithm is employed for search this arbitrate quantum state, going back from classical world to quantum world representation. The genetic algorithm searches for a compatible quantum state with the real world data, where the lost quantum phase is adjusted with the constraints to minimize the classes’ variance and to maximize the distance between the classes’ centroids. Computational simulations shown that the proposed methodology was able to transform a non linearly separable problem in classical representation space into a linearly separable problem in the quantum representation space, demonstrating an enhancement of data discrimination power.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf sg:journal.1033918
49 schema:name A proposal of quantum data representation to improve the discrimination power
50 schema:pagination 1-15
51 schema:productId N1654c8ff57f74e43a8d89bf2cb4be0bb
52 N66a3f0312da6423587aee00b72f35d35
53 Ncf9427ebd8cb4ab3883051300e54819f
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112386067
55 https://doi.org/10.1007/s11047-019-09734-w
56 schema:sdDatePublished 2019-04-11T09:58
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nc3eb74dd4a534d5ea12658bdf4bd4745
59 schema:url https://link.springer.com/10.1007%2Fs11047-019-09734-w
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N005245f2c90a44eb8d1db961eb7d43bc rdf:first Nbb96ccd0527f4b9aa782940e0bce1ff0
64 rdf:rest N84551e7fe2454ab88111208e05e766e7
65 N140ed96611654d7c9094e4d93a61546d rdf:first N811b3a91a25c4c78a2b54e31a128e704
66 rdf:rest N87275ace5fb245aa9eb2b007f9db781f
67 N1654c8ff57f74e43a8d89bf2cb4be0bb schema:name readcube_id
68 schema:value d3e531882c5b6dbdd211f6b4893d08dc1200269f1e2bd8f32a9f6dd9ad87b382
69 rdf:type schema:PropertyValue
70 N174e5cf1116d490ebf0f60b606af61ac schema:affiliation https://www.grid.ac/institutes/grid.411177.5
71 schema:familyName Pereira
72 schema:givenName Emeson J. S.
73 rdf:type schema:Person
74 N2dc29ed3412b45698f059b5c8411c2ae schema:affiliation https://www.grid.ac/institutes/grid.411177.5
75 schema:familyName Ferreira
76 schema:givenName Tiago A. E.
77 rdf:type schema:Person
78 N66a3f0312da6423587aee00b72f35d35 schema:name dimensions_id
79 schema:value pub.1112386067
80 rdf:type schema:PropertyValue
81 N811b3a91a25c4c78a2b54e31a128e704 schema:affiliation https://www.grid.ac/institutes/grid.460085.f
82 schema:familyName Sousa
83 schema:givenName Rosilda B. de
84 rdf:type schema:Person
85 N84551e7fe2454ab88111208e05e766e7 rdf:first N2dc29ed3412b45698f059b5c8411c2ae
86 rdf:rest rdf:nil
87 N87275ace5fb245aa9eb2b007f9db781f rdf:first N174e5cf1116d490ebf0f60b606af61ac
88 rdf:rest N005245f2c90a44eb8d1db961eb7d43bc
89 Nbb96ccd0527f4b9aa782940e0bce1ff0 schema:affiliation https://www.grid.ac/institutes/grid.412236.0
90 schema:familyName Cipolletti
91 schema:givenName Marina P.
92 rdf:type schema:Person
93 Nc3eb74dd4a534d5ea12658bdf4bd4745 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Ncf9427ebd8cb4ab3883051300e54819f schema:name doi
96 schema:value 10.1007/s11047-019-09734-w
97 rdf:type schema:PropertyValue
98 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
99 schema:name Physical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
102 schema:name Quantum Physics
103 rdf:type schema:DefinedTerm
104 sg:journal.1033918 schema:issn 1567-7818
105 1572-9796
106 schema:name Natural Computing
107 rdf:type schema:Periodical
108 sg:pub.10.1007/s10115-007-0114-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032043586
109 https://doi.org/10.1007/s10115-007-0114-2
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10489-017-0894-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084024859
112 https://doi.org/10.1007/s10489-017-0894-3
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s10489-017-0972-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090611541
115 https://doi.org/10.1007/s10489-017-0972-6
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/s11047-014-9470-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053050441
118 https://doi.org/10.1007/s11047-014-9470-5
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s11047-015-9495-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016057181
121 https://doi.org/10.1007/s11047-015-9495-4
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s11047-016-9554-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002724329
124 https://doi.org/10.1007/s11047-016-9554-5
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11047-018-9711-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107105882
127 https://doi.org/10.1007/s11047-018-9711-0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11063-008-9085-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015391604
130 https://doi.org/10.1007/s11063-008-9085-x
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/9781118337462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106820369
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/cta.2332 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084011023
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.eswa.2013.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009282790
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.eswa.2017.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084526005
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.eswa.2017.11.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093136706
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jocs.2017.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091883867
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.knosys.2014.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013606780
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.neucom.2010.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034384707
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.neucom.2017.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091818932
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.patcog.2012.07.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018536441
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.patcog.2015.09.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004391600
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.patcog.2016.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026523553
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.patcog.2016.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039670787
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.patcog.2017.02.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084100922
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.patcog.2018.01.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100813586
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.patrec.2017.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084101016
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.patrec.2018.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101780481
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/access.2017.2739807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091268290
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/access.2017.2782884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099742192
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/comst.2017.2786748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100168901
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/icaict.2011.6110912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095335382
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/pgec.1965.264137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061435370
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tfuzz.2017.2659764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086111691
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tit.1967.1053964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646286
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tkde.2009.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661979
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tnn.2002.804317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716506
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tnn.2005.845141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002360675
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1109/tnn.2005.860871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061716965
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/tsmca.2008.923034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061795447
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1364/fio.2018.fth1b.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107518189
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.411177.5 schema:alternateName Federal Rural University of Pernambuco
193 schema:name Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil
194 rdf:type schema:Organization
195 https://www.grid.ac/institutes/grid.412236.0 schema:alternateName Universidad Nacional del Sur
196 schema:name Centro Científico Tecnologico - CONICET, Universidad Nacional Del Sur, 8000FTN, Bahía Blanca, Argentina
197 rdf:type schema:Organization
198 https://www.grid.ac/institutes/grid.460085.f schema:alternateName Universidade Federal do Cariri
199 schema:name Centro de Ciências e Tecnologia, Universidade Federal do Cariri, 63048-080, Ceará, Juazeiro do Norte, Brazil
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...