A multi-population evolution stratagy and its application in low area/power FSM synthesis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Yanyun Tao, Lijun Zhang, Qinyu Wang, Rong Chen, Yuzhen Zhang

ABSTRACT

Finding a low area/power state assignment is a NP-hard problem in finite-state machines synthesis. In order to solve this problem, this study proposes a multi-population evolution strategy, denoted as MPES. MPES accomplishes the task by using inner-ES and outer-ES. In inner-ES, subpopulations evolve separately and are responsible for local search in different regions. Alternating (μ + λ) strategy and (μ, λ) strategy are employed to select parental individuals from the ranked population for mutation. Three mutation operators, ‘replacement’, ‘2-exchange’ and ‘shifting’, perform on the parental individuals to generate offspring. Different fitness functions are defined for area and power evaluation, respectively. Outer-ES acts as a shell to optimize the subpopulations of inner-ES for better and better solutions. In outer-ES, the parameters of evolving subpopulations are represented by individuals of outer-population. Outer-ES performs selection and mutation on the outer-population to change the parameters of evolving subpopulations in inner-ES for generating better solutions. Two assistant operators, competition and newborn, work together for poor subpopulations elimination and creating new subpopulations. By using two-level ES, MPES is able to obtain multiple good solutions. We test the MPES extensively on benchmarks, and compare it with previous state assignment methods from various aspects. The experimental results show MPES achieved a significant cost reduction of area and power dissipation over the previous publications. More... »

PAGES

139-161

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11047-017-9659-5

DOI

http://dx.doi.org/10.1007/s11047-017-9659-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1093010461


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "School of Rail Transportation, Soochow University, 215137, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "Yanyun", 
        "id": "sg:person.015576702415.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576702415.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "School of Rail Transportation, Soochow University, 215137, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lijun", 
        "id": "sg:person.012011010617.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012011010617.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jiangnan University", 
          "id": "https://www.grid.ac/institutes/grid.258151.a", 
          "name": [
            "School of Internet of Things, Jiangnan University, 214014, Wuxi, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Qinyu", 
        "id": "sg:person.07717115655.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717115655.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.263761.7", 
          "name": [
            "School of Rail Transportation, Soochow University, 215137, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Rong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "First Affiliated Hospital of Soochow University", 
          "id": "https://www.grid.ac/institutes/grid.429222.d", 
          "name": [
            "The First Affiliated Hospital of Soochow University, 215006, Suzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yuzhen", 
        "id": "sg:person.016477623615.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016477623615.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/764808.764824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003524060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compeleceng.2015.03.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017089745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10710-012-9178-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020160738", 
          "https://doi.org/10.1007/s10710-012-9178-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2014.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026162373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cap.2003.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028449201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02687704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034470620", 
          "https://doi.org/10.1007/bf02687704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02687704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034470620", 
          "https://doi.org/10.1007/bf02687704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:genp.0000017009.11392.e2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036632733", 
          "https://doi.org/10.1023/b:genp.0000017009.11392.e2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015059928466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037495722", 
          "https://doi.org/10.1023/a:1015059928466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.03.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040413929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vlsi.2007.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041157403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mejo.2004.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041909580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-015-1791-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042971160", 
          "https://doi.org/10.1007/s00500-015-1791-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2013.08.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045374026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10846-009-9392-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048511605", 
          "https://doi.org/10.1007/s10846-009-9392-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10846-009-9392-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048511605", 
          "https://doi.org/10.1007/s10846-009-9392-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10846-009-9392-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048511605", 
          "https://doi.org/10.1007/s10846-009-9392-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2016.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050598845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19961547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056784639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-cdt.2010.0045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056819500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-cdt:19951885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056844914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-cdt:20020431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056845299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-cdt:20030980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056845363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/bxh099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059479660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/21.370202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061122102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/43.59068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061173627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tevc.2014.2306677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061605201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hicss.1990.205137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086301729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscas.2000.856410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093210490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vlsi-dat.2016.7482537", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093270270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icccas.2006.285215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093524054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cicc.1994.379749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093588035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iscas.2006.1693830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094209832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ssci.2015.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095605600"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "Finding a low area/power state assignment is a NP-hard problem in finite-state machines synthesis. In order to solve this problem, this study proposes a multi-population evolution strategy, denoted as MPES. MPES accomplishes the task by using inner-ES and outer-ES. In inner-ES, subpopulations evolve separately and are responsible for local search in different regions. Alternating (\u03bc + \u03bb) strategy and (\u03bc, \u03bb) strategy are employed to select parental individuals from the ranked population for mutation. Three mutation operators, \u2018replacement\u2019, \u20182-exchange\u2019 and \u2018shifting\u2019, perform on the parental individuals to generate offspring. Different fitness functions are defined for area and power evaluation, respectively. Outer-ES acts as a shell to optimize the subpopulations of inner-ES for better and better solutions. In outer-ES, the parameters of evolving subpopulations are represented by individuals of outer-population. Outer-ES performs selection and mutation on the outer-population to change the parameters of evolving subpopulations in inner-ES for generating better solutions. Two assistant operators, competition and newborn, work together for poor subpopulations elimination and creating new subpopulations. By using two-level ES, MPES is able to obtain multiple good solutions. We test the MPES extensively on benchmarks, and compare it with previous state assignment methods from various aspects. The experimental results show MPES achieved a significant cost reduction of area and power dissipation over the previous publications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11047-017-9659-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033918", 
        "issn": [
          "1567-7818", 
          "1572-9796"
        ], 
        "name": "Natural Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "A multi-population evolution stratagy and its application in low area/power FSM synthesis", 
    "pagination": "139-161", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fd9d8fcdcf5bed0db0e1ecbe4d3cf4ffed8429148fcd81a3886caaaf11470917"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11047-017-9659-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1093010461"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11047-017-9659-5", 
      "https://app.dimensions.ai/details/publication/pub.1093010461"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47994_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11047-017-9659-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11047-017-9659-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11047-017-9659-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11047-017-9659-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11047-017-9659-5'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11047-017-9659-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N59aa0d1833f147f8b06ef5759bd81fb3
4 schema:citation sg:pub.10.1007/bf02687704
5 sg:pub.10.1007/s00500-015-1791-5
6 sg:pub.10.1007/s10710-012-9178-1
7 sg:pub.10.1007/s10846-009-9392-0
8 sg:pub.10.1023/a:1015059928466
9 sg:pub.10.1023/b:genp.0000017009.11392.e2
10 https://doi.org/10.1016/j.asoc.2012.03.074
11 https://doi.org/10.1016/j.asoc.2013.08.004
12 https://doi.org/10.1016/j.asoc.2016.07.001
13 https://doi.org/10.1016/j.cap.2003.09.017
14 https://doi.org/10.1016/j.compeleceng.2015.03.014
15 https://doi.org/10.1016/j.ins.2014.03.008
16 https://doi.org/10.1016/j.mejo.2004.10.009
17 https://doi.org/10.1016/j.vlsi.2007.02.001
18 https://doi.org/10.1049/el:19961547
19 https://doi.org/10.1049/iet-cdt.2010.0045
20 https://doi.org/10.1049/ip-cdt:19951885
21 https://doi.org/10.1049/ip-cdt:20020431
22 https://doi.org/10.1049/ip-cdt:20030980
23 https://doi.org/10.1093/comjnl/bxh099
24 https://doi.org/10.1109/21.370202
25 https://doi.org/10.1109/43.59068
26 https://doi.org/10.1109/cicc.1994.379749
27 https://doi.org/10.1109/hicss.1990.205137
28 https://doi.org/10.1109/icccas.2006.285215
29 https://doi.org/10.1109/iscas.2000.856410
30 https://doi.org/10.1109/iscas.2006.1693830
31 https://doi.org/10.1109/ssci.2015.211
32 https://doi.org/10.1109/tevc.2014.2306677
33 https://doi.org/10.1109/vlsi-dat.2016.7482537
34 https://doi.org/10.1145/764808.764824
35 schema:datePublished 2019-03
36 schema:datePublishedReg 2019-03-01
37 schema:description Finding a low area/power state assignment is a NP-hard problem in finite-state machines synthesis. In order to solve this problem, this study proposes a multi-population evolution strategy, denoted as MPES. MPES accomplishes the task by using inner-ES and outer-ES. In inner-ES, subpopulations evolve separately and are responsible for local search in different regions. Alternating (μ + λ) strategy and (μ, λ) strategy are employed to select parental individuals from the ranked population for mutation. Three mutation operators, ‘replacement’, ‘2-exchange’ and ‘shifting’, perform on the parental individuals to generate offspring. Different fitness functions are defined for area and power evaluation, respectively. Outer-ES acts as a shell to optimize the subpopulations of inner-ES for better and better solutions. In outer-ES, the parameters of evolving subpopulations are represented by individuals of outer-population. Outer-ES performs selection and mutation on the outer-population to change the parameters of evolving subpopulations in inner-ES for generating better solutions. Two assistant operators, competition and newborn, work together for poor subpopulations elimination and creating new subpopulations. By using two-level ES, MPES is able to obtain multiple good solutions. We test the MPES extensively on benchmarks, and compare it with previous state assignment methods from various aspects. The experimental results show MPES achieved a significant cost reduction of area and power dissipation over the previous publications.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N3c9bb238447e4b4a9913376604eabc7e
42 Ne85bcbd8bb634d2bb6b8f357436ea0bc
43 sg:journal.1033918
44 schema:name A multi-population evolution stratagy and its application in low area/power FSM synthesis
45 schema:pagination 139-161
46 schema:productId N18512ec217304a73881c8f0f395fe856
47 N75d2c7a37f7b411da42b34c78690a01b
48 Nc89494ddc80f443ebe343f651bb5523d
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093010461
50 https://doi.org/10.1007/s11047-017-9659-5
51 schema:sdDatePublished 2019-04-11T09:13
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nc67b2e71272940b0b1168889c4b46e8a
54 schema:url https://link.springer.com/10.1007%2Fs11047-017-9659-5
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N074383b39f234d7985470083287b36c1 rdf:first sg:person.07717115655.10
59 rdf:rest N15162a05db994cddb3392604664bcc37
60 N15162a05db994cddb3392604664bcc37 rdf:first N5660ffa6aa8e4239ad3ec60e16a55c0a
61 rdf:rest Nf494f2a5846443c39c62a0759cf42dc3
62 N18512ec217304a73881c8f0f395fe856 schema:name readcube_id
63 schema:value fd9d8fcdcf5bed0db0e1ecbe4d3cf4ffed8429148fcd81a3886caaaf11470917
64 rdf:type schema:PropertyValue
65 N3c9bb238447e4b4a9913376604eabc7e schema:issueNumber 1
66 rdf:type schema:PublicationIssue
67 N5660ffa6aa8e4239ad3ec60e16a55c0a schema:affiliation https://www.grid.ac/institutes/grid.263761.7
68 schema:familyName Chen
69 schema:givenName Rong
70 rdf:type schema:Person
71 N59aa0d1833f147f8b06ef5759bd81fb3 rdf:first sg:person.015576702415.44
72 rdf:rest N7ad696c9b4184ec39d604b69262ee547
73 N75d2c7a37f7b411da42b34c78690a01b schema:name dimensions_id
74 schema:value pub.1093010461
75 rdf:type schema:PropertyValue
76 N7ad696c9b4184ec39d604b69262ee547 rdf:first sg:person.012011010617.29
77 rdf:rest N074383b39f234d7985470083287b36c1
78 Nc67b2e71272940b0b1168889c4b46e8a schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 Nc89494ddc80f443ebe343f651bb5523d schema:name doi
81 schema:value 10.1007/s11047-017-9659-5
82 rdf:type schema:PropertyValue
83 Ne85bcbd8bb634d2bb6b8f357436ea0bc schema:volumeNumber 18
84 rdf:type schema:PublicationVolume
85 Nf494f2a5846443c39c62a0759cf42dc3 rdf:first sg:person.016477623615.27
86 rdf:rest rdf:nil
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:journal.1033918 schema:issn 1567-7818
94 1572-9796
95 schema:name Natural Computing
96 rdf:type schema:Periodical
97 sg:person.012011010617.29 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
98 schema:familyName Zhang
99 schema:givenName Lijun
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012011010617.29
101 rdf:type schema:Person
102 sg:person.015576702415.44 schema:affiliation https://www.grid.ac/institutes/grid.263761.7
103 schema:familyName Tao
104 schema:givenName Yanyun
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576702415.44
106 rdf:type schema:Person
107 sg:person.016477623615.27 schema:affiliation https://www.grid.ac/institutes/grid.429222.d
108 schema:familyName Zhang
109 schema:givenName Yuzhen
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016477623615.27
111 rdf:type schema:Person
112 sg:person.07717115655.10 schema:affiliation https://www.grid.ac/institutes/grid.258151.a
113 schema:familyName Wang
114 schema:givenName Qinyu
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07717115655.10
116 rdf:type schema:Person
117 sg:pub.10.1007/bf02687704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034470620
118 https://doi.org/10.1007/bf02687704
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/s00500-015-1791-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042971160
121 https://doi.org/10.1007/s00500-015-1791-5
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/s10710-012-9178-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020160738
124 https://doi.org/10.1007/s10710-012-9178-1
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s10846-009-9392-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048511605
127 https://doi.org/10.1007/s10846-009-9392-0
128 rdf:type schema:CreativeWork
129 sg:pub.10.1023/a:1015059928466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037495722
130 https://doi.org/10.1023/a:1015059928466
131 rdf:type schema:CreativeWork
132 sg:pub.10.1023/b:genp.0000017009.11392.e2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036632733
133 https://doi.org/10.1023/b:genp.0000017009.11392.e2
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.asoc.2012.03.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040413929
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.asoc.2013.08.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045374026
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.asoc.2016.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050598845
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.cap.2003.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028449201
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.compeleceng.2015.03.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017089745
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.ins.2014.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026162373
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.mejo.2004.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041909580
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.vlsi.2007.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041157403
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1049/el:19961547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056784639
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1049/iet-cdt.2010.0045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056819500
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1049/ip-cdt:19951885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056844914
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1049/ip-cdt:20020431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056845299
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1049/ip-cdt:20030980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056845363
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/comjnl/bxh099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059479660
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/21.370202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061122102
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/43.59068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061173627
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/cicc.1994.379749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093588035
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/hicss.1990.205137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086301729
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/icccas.2006.285215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093524054
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/iscas.2000.856410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093210490
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/iscas.2006.1693830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094209832
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/ssci.2015.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095605600
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tevc.2014.2306677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061605201
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/vlsi-dat.2016.7482537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093270270
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1145/764808.764824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003524060
184 rdf:type schema:CreativeWork
185 https://www.grid.ac/institutes/grid.258151.a schema:alternateName Jiangnan University
186 schema:name School of Internet of Things, Jiangnan University, 214014, Wuxi, China
187 rdf:type schema:Organization
188 https://www.grid.ac/institutes/grid.263761.7 schema:alternateName Soochow University
189 schema:name School of Rail Transportation, Soochow University, 215137, Suzhou, China
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.429222.d schema:alternateName First Affiliated Hospital of Soochow University
192 schema:name The First Affiliated Hospital of Soochow University, 215006, Suzhou, China
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...