Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Vegard Edvardsen

ABSTRACT

As neuroscience gradually uncovers how the brain represents and computes with high-level spatial information, the endeavor of constructing biologically-inspired robot controllers using these spatial representations has become viable. Grid cells are particularly interesting in this regard, as they are thought to provide a general coordinate system of space. Artificial neural network models of grid cells show the ability to perform path integration, but important for a robot is also the ability to calculate the direction from the current location, as indicated by the path integrator, to a remembered goal. This paper presents a neural system that integrates networks of path integrating grid cells with a grid cell decoding mechanism. The decoding mechanism detects differences between multi-scale grid cell representations of the present location and the goal, in order to calculate a goal-direction signal for the robot. The model successfully guides a simulated agent to its goal, showing promise for implementing the system on a real robot in the future. More... »

PAGES

13-27

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11047-016-9575-0

DOI

http://dx.doi.org/10.1007/s11047-016-9575-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051210535


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Norwegian University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.5947.f", 
          "name": [
            "Department of Computer and Information Science, NTNU \u2013 Norwegian University of Science and Technology, Trondheim, Norway"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Edvardsen", 
        "givenName": "Vegard", 
        "id": "sg:person.015224627265.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224627265.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neunet.2009.06.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000067379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphysparis.2013.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002605527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.2901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002859955", 
          "https://doi.org/10.1038/nn.2901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-9695-1_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007421715", 
          "https://doi.org/10.1007/978-90-481-9695-1_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-9695-1_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007421715", 
          "https://doi.org/10.1007/978-90-481-9695-1_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009635014", 
          "https://doi.org/10.1038/nature11649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011718575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1460-9568.2012.08015.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012837994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nlm.2014.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017780186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/021204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018497582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/021204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018497582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/021204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018497582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024389887", 
          "https://doi.org/10.1038/nature03721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024389887", 
          "https://doi.org/10.1038/nature03721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024389887", 
          "https://doi.org/10.1038/nature03721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024389887", 
          "https://doi.org/10.1038/nature03721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.08362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024770578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2015.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026025535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncir.2012.00020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026203742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0278364909340592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026828114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0278364909340592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026828114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2011.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026873599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027237245", 
          "https://doi.org/10.1038/nrn1932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1932", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027237245", 
          "https://doi.org/10.1038/nrn1932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2014.11.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029212271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2013.0484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044411108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045575446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166466", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045575446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cobeha.2014.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049961808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(71)90358-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051676756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-8993(71)90358-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051676756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.5684-07.2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053303880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.10-02-00420.1990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078630515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcnn.2009.5178864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093969204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iros.2008.4650872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095241388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnn.1994.374831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095273881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7551/978-0-262-33027-5-ch039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099482573"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "As neuroscience gradually uncovers how the brain represents and computes with high-level spatial information, the endeavor of constructing biologically-inspired robot controllers using these spatial representations has become viable. Grid cells are particularly interesting in this regard, as they are thought to provide a general coordinate system of space. Artificial neural network models of grid cells show the ability to perform path integration, but important for a robot is also the ability to calculate the direction from the current location, as indicated by the path integrator, to a remembered goal. This paper presents a neural system that integrates networks of path integrating grid cells with a grid cell decoding mechanism. The decoding mechanism detects differences between multi-scale grid cell representations of the present location and the goal, in order to calculate a goal-direction signal for the robot. The model successfully guides a simulated agent to its goal, showing promise for implementing the system on a real robot in the future.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11047-016-9575-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1033918", 
        "issn": [
          "1567-7818", 
          "1572-9796"
        ], 
        "name": "Natural Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network", 
    "pagination": "13-27", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f3f26b078b70231dd4f3bb9cb5fd0f159e1fde72135a1b399ad5a3823015d3c1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11047-016-9575-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051210535"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11047-016-9575-0", 
      "https://app.dimensions.ai/details/publication/pub.1051210535"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47957_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11047-016-9575-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11047-016-9575-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11047-016-9575-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11047-016-9575-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11047-016-9575-0'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11047-016-9575-0 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ndb704f2de2a94061a7fb6486ba6918d6
4 schema:citation sg:pub.10.1007/978-90-481-9695-1_73
5 sg:pub.10.1038/nature03721
6 sg:pub.10.1038/nature11649
7 sg:pub.10.1038/nn.2901
8 sg:pub.10.1038/nrn1932
9 https://doi.org/10.1016/0006-8993(71)90358-1
10 https://doi.org/10.1016/j.cobeha.2014.08.005
11 https://doi.org/10.1016/j.cub.2014.11.001
12 https://doi.org/10.1016/j.jphysparis.2013.07.002
13 https://doi.org/10.1016/j.neunet.2009.06.029
14 https://doi.org/10.1016/j.neuron.2011.07.023
15 https://doi.org/10.1016/j.neuron.2015.07.006
16 https://doi.org/10.1016/j.nlm.2014.07.003
17 https://doi.org/10.1098/rstb.2013.0484
18 https://doi.org/10.1101/021204
19 https://doi.org/10.1109/icnn.1994.374831
20 https://doi.org/10.1109/ijcnn.2009.5178864
21 https://doi.org/10.1109/iros.2008.4650872
22 https://doi.org/10.1111/j.1460-9568.2012.08015.x
23 https://doi.org/10.1126/science.1166466
24 https://doi.org/10.1177/0278364909340592
25 https://doi.org/10.1371/journal.pcbi.1000291
26 https://doi.org/10.1523/jneurosci.10-02-00420.1990
27 https://doi.org/10.1523/jneurosci.5684-07.2008
28 https://doi.org/10.3389/fncir.2012.00020
29 https://doi.org/10.7551/978-0-262-33027-5-ch039
30 https://doi.org/10.7554/elife.08362
31 schema:datePublished 2019-03
32 schema:datePublishedReg 2019-03-01
33 schema:description As neuroscience gradually uncovers how the brain represents and computes with high-level spatial information, the endeavor of constructing biologically-inspired robot controllers using these spatial representations has become viable. Grid cells are particularly interesting in this regard, as they are thought to provide a general coordinate system of space. Artificial neural network models of grid cells show the ability to perform path integration, but important for a robot is also the ability to calculate the direction from the current location, as indicated by the path integrator, to a remembered goal. This paper presents a neural system that integrates networks of path integrating grid cells with a grid cell decoding mechanism. The decoding mechanism detects differences between multi-scale grid cell representations of the present location and the goal, in order to calculate a goal-direction signal for the robot. The model successfully guides a simulated agent to its goal, showing promise for implementing the system on a real robot in the future.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N3990861a798b4b31a8c0b6a5e391e41d
38 N7543919ace7d4e5eb84aabdfebac94b2
39 sg:journal.1033918
40 schema:name Goal-directed navigation based on path integration and decoding of grid cells in an artificial neural network
41 schema:pagination 13-27
42 schema:productId N624e7d0205cc470ca9707294d6c97dbf
43 Nc3003824c728469eb7cac12410241b60
44 Ne5f338927e08406d8edbf5c629d1d737
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051210535
46 https://doi.org/10.1007/s11047-016-9575-0
47 schema:sdDatePublished 2019-04-11T09:08
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N36cc77b92b8e4d928b52017f31eb4035
50 schema:url https://link.springer.com/10.1007%2Fs11047-016-9575-0
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N36cc77b92b8e4d928b52017f31eb4035 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N3990861a798b4b31a8c0b6a5e391e41d schema:issueNumber 1
57 rdf:type schema:PublicationIssue
58 N624e7d0205cc470ca9707294d6c97dbf schema:name dimensions_id
59 schema:value pub.1051210535
60 rdf:type schema:PropertyValue
61 N7543919ace7d4e5eb84aabdfebac94b2 schema:volumeNumber 18
62 rdf:type schema:PublicationVolume
63 Nc3003824c728469eb7cac12410241b60 schema:name readcube_id
64 schema:value f3f26b078b70231dd4f3bb9cb5fd0f159e1fde72135a1b399ad5a3823015d3c1
65 rdf:type schema:PropertyValue
66 Ndb704f2de2a94061a7fb6486ba6918d6 rdf:first sg:person.015224627265.23
67 rdf:rest rdf:nil
68 Ne5f338927e08406d8edbf5c629d1d737 schema:name doi
69 schema:value 10.1007/s11047-016-9575-0
70 rdf:type schema:PropertyValue
71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
72 schema:name Information and Computing Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
75 schema:name Artificial Intelligence and Image Processing
76 rdf:type schema:DefinedTerm
77 sg:journal.1033918 schema:issn 1567-7818
78 1572-9796
79 schema:name Natural Computing
80 rdf:type schema:Periodical
81 sg:person.015224627265.23 schema:affiliation https://www.grid.ac/institutes/grid.5947.f
82 schema:familyName Edvardsen
83 schema:givenName Vegard
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015224627265.23
85 rdf:type schema:Person
86 sg:pub.10.1007/978-90-481-9695-1_73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007421715
87 https://doi.org/10.1007/978-90-481-9695-1_73
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/nature03721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024389887
90 https://doi.org/10.1038/nature03721
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/nature11649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009635014
93 https://doi.org/10.1038/nature11649
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/nn.2901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002859955
96 https://doi.org/10.1038/nn.2901
97 rdf:type schema:CreativeWork
98 sg:pub.10.1038/nrn1932 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027237245
99 https://doi.org/10.1038/nrn1932
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0006-8993(71)90358-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051676756
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.cobeha.2014.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049961808
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.cub.2014.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029212271
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.jphysparis.2013.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002605527
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.neunet.2009.06.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000067379
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.neuron.2011.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026873599
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.neuron.2015.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026025535
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.nlm.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017780186
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1098/rstb.2013.0484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044411108
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1101/021204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018497582
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/icnn.1994.374831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095273881
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/ijcnn.2009.5178864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093969204
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/iros.2008.4650872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095241388
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1111/j.1460-9568.2012.08015.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012837994
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1126/science.1166466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045575446
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1177/0278364909340592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026828114
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1371/journal.pcbi.1000291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011718575
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1523/jneurosci.10-02-00420.1990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078630515
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1523/jneurosci.5684-07.2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053303880
138 rdf:type schema:CreativeWork
139 https://doi.org/10.3389/fncir.2012.00020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026203742
140 rdf:type schema:CreativeWork
141 https://doi.org/10.7551/978-0-262-33027-5-ch039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099482573
142 rdf:type schema:CreativeWork
143 https://doi.org/10.7554/elife.08362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024770578
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.5947.f schema:alternateName Norwegian University of Science and Technology
146 schema:name Department of Computer and Information Science, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...