On discrete models and immunological algorithms for protein structure prediction View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-04-22

AUTHORS

Vincenzo Cutello, Giuseppe Morelli, Giuseppe Nicosia, Mario Pavone, Giuseppe Scollo

ABSTRACT

Discrete models for protein structure prediction embed the protein amino acid sequence into a discrete spatial structure, usually a lattice, where an optimal tertiary structure is predicted on the basis of simple assumptions relating to the hydrophobic–hydrophilic character of amino acids in the sequence and to relevant interactions for free energy minimization. While the prediction problem is known to be NP complete even in the simple setting of Dill’s model with a 2D-lattice, a variety of bio-inspired algorithms for this problem have been proposed in the literature. Immunological algorithms are inspired by the kind of optimization that immune systems perform when identifying and promoting the replication of the most effective antibodies against given antigens. A quick, state-of-the-art survey of discrete models and immunological algorithms for protein structure prediction is presented in this paper, and the main design and performance features of an immunological algorithm for this problem are illustrated in a tutorial fashion. More... »

PAGES

91-102

References to SciGraph publications

  • <error retrieving object. in <ERROR RETRIEVING OBJECT
  • 2009-08-13. Log-gain Principles for Metabolic P Systems in ALGORITHMIC BIOPROCESSES
  • 2010. From P to MP Systems in MEMBRANE COMPUTING
  • 2002-10-04. Multimeme Algorithms for Protein Structure Prediction in PARALLEL PROBLEM SOLVING FROM NATURE — PPSN VII
  • 1997-01-01. From Levinthal to pathways to funnels in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2005. Clonal Selection Algorithms: A Comparative Case Study Using Effective Mutation Potentials in ARTIFICIAL IMMUNE SYSTEMS
  • 2006-12-29. An immune algorithm with stochastic aging and kullback entropy for the chromatic number problem in JOURNAL OF COMBINATORIAL OPTIMIZATION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11047-010-9196-y

    DOI

    http://dx.doi.org/10.1007/s11047-010-9196-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1017163958


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computer Software", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Computer Science, University of Catania, Catania, Italy", 
              "id": "http://www.grid.ac/institutes/grid.8158.4", 
              "name": [
                "Department of Mathematics and Computer Science, University of Catania, Catania, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cutello", 
            "givenName": "Vincenzo", 
            "id": "sg:person.013504603243.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504603243.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Computer Science, University of Catania, Catania, Italy", 
              "id": "http://www.grid.ac/institutes/grid.8158.4", 
              "name": [
                "Department of Mathematics and Computer Science, University of Catania, Catania, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morelli", 
            "givenName": "Giuseppe", 
            "id": "sg:person.014766162655.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014766162655.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Computer Science, University of Catania, Catania, Italy", 
              "id": "http://www.grid.ac/institutes/grid.8158.4", 
              "name": [
                "Department of Mathematics and Computer Science, University of Catania, Catania, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nicosia", 
            "givenName": "Giuseppe", 
            "id": "sg:person.0742061443.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742061443.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Computer Science, University of Catania, Catania, Italy", 
              "id": "http://www.grid.ac/institutes/grid.8158.4", 
              "name": [
                "Department of Mathematics and Computer Science, University of Catania, Catania, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pavone", 
            "givenName": "Mario", 
            "id": "sg:person.07350620665.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Computer Science, University of Catania, Catania, Italy", 
              "id": "http://www.grid.ac/institutes/grid.8158.4", 
              "name": [
                "Department of Mathematics and Computer Science, University of Catania, Catania, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Scollo", 
            "givenName": "Giuseppe", 
            "id": "sg:person.013562546273.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562546273.78"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-88869-7_28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006296897", 
              "https://doi.org/10.1007/978-3-540-88869-7_28"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45712-7_74", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053053261", 
              "https://doi.org/10.1007/3-540-45712-7_74"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10878-006-9036-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053253130", 
              "https://doi.org/10.1007/s10878-006-9036-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-11467-0_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019227810", 
              "https://doi.org/10.1007/978-3-642-11467-0_7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsb0197-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012411826", 
              "https://doi.org/10.1038/nsb0197-10"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/11536444_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019780999", 
              "https://doi.org/10.1007/11536444_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45105-6_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046153098", 
              "https://doi.org/10.1007/3-540-45105-6_23"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-04-22", 
        "datePublishedReg": "2010-04-22", 
        "description": "Discrete models for protein structure prediction embed the protein amino acid sequence into a discrete spatial structure, usually a lattice, where an optimal tertiary structure is predicted on the basis of simple assumptions relating to the hydrophobic\u2013hydrophilic character of amino acids in the sequence and to relevant interactions for free energy minimization. While the prediction problem is known to be NP complete even in the simple setting of Dill\u2019s model with a 2D-lattice, a variety of bio-inspired algorithms for this problem have been proposed in the literature. Immunological algorithms are inspired by the kind of optimization that immune systems perform when identifying and promoting the replication of the most effective antibodies against given antigens. A quick, state-of-the-art survey of discrete models and immunological algorithms for protein structure prediction is presented in this paper, and the main design and performance features of an immunological algorithm for this problem are illustrated in a tutorial fashion.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11047-010-9196-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1033918", 
            "issn": [
              "1567-7818", 
              "1572-9796"
            ], 
            "name": "Natural Computing", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "10"
          }
        ], 
        "keywords": [
          "immunological algorithm", 
          "protein structure prediction", 
          "kind of optimization", 
          "prediction problem", 
          "art survey", 
          "algorithm", 
          "structure prediction", 
          "tutorial fashion", 
          "simple setting", 
          "performance features", 
          "discrete spatial structure", 
          "discrete model", 
          "main design", 
          "energy minimization", 
          "NP", 
          "model", 
          "optimization", 
          "prediction", 
          "minimization", 
          "variety of bio", 
          "system", 
          "features", 
          "design", 
          "simple assumptions", 
          "sequence", 
          "free energy minimization", 
          "Dill's model", 
          "bio", 
          "kind", 
          "fashion", 
          "spatial structure", 
          "problem", 
          "assumption", 
          "variety", 
          "structure", 
          "relevant interactions", 
          "setting", 
          "state", 
          "literature", 
          "basis", 
          "interaction", 
          "character", 
          "protein amino acid sequence", 
          "lattice", 
          "survey", 
          "replication", 
          "tertiary structure", 
          "immune system", 
          "effective antibodies", 
          "antibodies", 
          "antigen", 
          "amino acid sequence", 
          "acid sequence", 
          "amino acids", 
          "acid", 
          "paper", 
          "hydrophobic-hydrophilic character", 
          "optimal tertiary structure"
        ], 
        "name": "On discrete models and immunological algorithms for protein structure prediction", 
        "pagination": "91-102", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1017163958"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11047-010-9196-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11047-010-9196-y", 
          "https://app.dimensions.ai/details/publication/pub.1017163958"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_505.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11047-010-9196-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11047-010-9196-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11047-010-9196-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11047-010-9196-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11047-010-9196-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      22 PREDICATES      91 URIs      75 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11047-010-9196-y schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0803
    4 schema:author N2d753aa6143d4dc890bd375a505dcbc5
    5 schema:citation sg:pub.10.1007/11536444_2
    6 sg:pub.10.1007/3-540-45105-6_23
    7 sg:pub.10.1007/3-540-45712-7_74
    8 sg:pub.10.1007/978-3-540-88869-7_28
    9 sg:pub.10.1007/978-3-642-11467-0_7
    10 sg:pub.10.1007/s10878-006-9036-2
    11 sg:pub.10.1038/nsb0197-10
    12 schema:datePublished 2010-04-22
    13 schema:datePublishedReg 2010-04-22
    14 schema:description Discrete models for protein structure prediction embed the protein amino acid sequence into a discrete spatial structure, usually a lattice, where an optimal tertiary structure is predicted on the basis of simple assumptions relating to the hydrophobic–hydrophilic character of amino acids in the sequence and to relevant interactions for free energy minimization. While the prediction problem is known to be NP complete even in the simple setting of Dill’s model with a 2D-lattice, a variety of bio-inspired algorithms for this problem have been proposed in the literature. Immunological algorithms are inspired by the kind of optimization that immune systems perform when identifying and promoting the replication of the most effective antibodies against given antigens. A quick, state-of-the-art survey of discrete models and immunological algorithms for protein structure prediction is presented in this paper, and the main design and performance features of an immunological algorithm for this problem are illustrated in a tutorial fashion.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N26f663a9fb1b4ec3a47eb6a61cf90ff0
    19 Nc24d4ebf03d34b93900f54214c324a42
    20 sg:journal.1033918
    21 schema:keywords Dill's model
    22 NP
    23 acid
    24 acid sequence
    25 algorithm
    26 amino acid sequence
    27 amino acids
    28 antibodies
    29 antigen
    30 art survey
    31 assumption
    32 basis
    33 bio
    34 character
    35 design
    36 discrete model
    37 discrete spatial structure
    38 effective antibodies
    39 energy minimization
    40 fashion
    41 features
    42 free energy minimization
    43 hydrophobic-hydrophilic character
    44 immune system
    45 immunological algorithm
    46 interaction
    47 kind
    48 kind of optimization
    49 lattice
    50 literature
    51 main design
    52 minimization
    53 model
    54 optimal tertiary structure
    55 optimization
    56 paper
    57 performance features
    58 prediction
    59 prediction problem
    60 problem
    61 protein amino acid sequence
    62 protein structure prediction
    63 relevant interactions
    64 replication
    65 sequence
    66 setting
    67 simple assumptions
    68 simple setting
    69 spatial structure
    70 state
    71 structure
    72 structure prediction
    73 survey
    74 system
    75 tertiary structure
    76 tutorial fashion
    77 variety
    78 variety of bio
    79 schema:name On discrete models and immunological algorithms for protein structure prediction
    80 schema:pagination 91-102
    81 schema:productId N26958492775e46a9aeec425651562d72
    82 Nf3e8681517fe4245bcbbceff4cbd92ce
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017163958
    84 https://doi.org/10.1007/s11047-010-9196-y
    85 schema:sdDatePublished 2022-01-01T18:21
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher N8c5656282971418898930a3a06f2d52d
    88 schema:url https://doi.org/10.1007/s11047-010-9196-y
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N24b07b304bbe48e5a43e7674c0f15c38 rdf:first sg:person.014766162655.98
    93 rdf:rest Nc4c7da4f56da44738799039879c44ba9
    94 N26958492775e46a9aeec425651562d72 schema:name dimensions_id
    95 schema:value pub.1017163958
    96 rdf:type schema:PropertyValue
    97 N26f663a9fb1b4ec3a47eb6a61cf90ff0 schema:volumeNumber 10
    98 rdf:type schema:PublicationVolume
    99 N2d753aa6143d4dc890bd375a505dcbc5 rdf:first sg:person.013504603243.51
    100 rdf:rest N24b07b304bbe48e5a43e7674c0f15c38
    101 N3c602b2bf2dd4cd78893f744ad4694c3 rdf:first sg:person.013562546273.78
    102 rdf:rest rdf:nil
    103 N73ff131885d64271a9accccf5d1f8e43 rdf:first sg:person.07350620665.82
    104 rdf:rest N3c602b2bf2dd4cd78893f744ad4694c3
    105 N8c5656282971418898930a3a06f2d52d schema:name Springer Nature - SN SciGraph project
    106 rdf:type schema:Organization
    107 Nc24d4ebf03d34b93900f54214c324a42 schema:issueNumber 1
    108 rdf:type schema:PublicationIssue
    109 Nc4c7da4f56da44738799039879c44ba9 rdf:first sg:person.0742061443.97
    110 rdf:rest N73ff131885d64271a9accccf5d1f8e43
    111 Nf3e8681517fe4245bcbbceff4cbd92ce schema:name doi
    112 schema:value 10.1007/s11047-010-9196-y
    113 rdf:type schema:PropertyValue
    114 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Information and Computing Sciences
    116 rdf:type schema:DefinedTerm
    117 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Artificial Intelligence and Image Processing
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Computer Software
    122 rdf:type schema:DefinedTerm
    123 sg:journal.1033918 schema:issn 1567-7818
    124 1572-9796
    125 schema:name Natural Computing
    126 schema:publisher Springer Nature
    127 rdf:type schema:Periodical
    128 sg:person.013504603243.51 schema:affiliation grid-institutes:grid.8158.4
    129 schema:familyName Cutello
    130 schema:givenName Vincenzo
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013504603243.51
    132 rdf:type schema:Person
    133 sg:person.013562546273.78 schema:affiliation grid-institutes:grid.8158.4
    134 schema:familyName Scollo
    135 schema:givenName Giuseppe
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013562546273.78
    137 rdf:type schema:Person
    138 sg:person.014766162655.98 schema:affiliation grid-institutes:grid.8158.4
    139 schema:familyName Morelli
    140 schema:givenName Giuseppe
    141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014766162655.98
    142 rdf:type schema:Person
    143 sg:person.07350620665.82 schema:affiliation grid-institutes:grid.8158.4
    144 schema:familyName Pavone
    145 schema:givenName Mario
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350620665.82
    147 rdf:type schema:Person
    148 sg:person.0742061443.97 schema:affiliation grid-institutes:grid.8158.4
    149 schema:familyName Nicosia
    150 schema:givenName Giuseppe
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742061443.97
    152 rdf:type schema:Person
    153 sg:pub.10.1007/11536444_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019780999
    154 https://doi.org/10.1007/11536444_2
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/3-540-45105-6_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046153098
    157 https://doi.org/10.1007/3-540-45105-6_23
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/3-540-45712-7_74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053053261
    160 https://doi.org/10.1007/3-540-45712-7_74
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/978-3-540-88869-7_28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006296897
    163 https://doi.org/10.1007/978-3-540-88869-7_28
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/978-3-642-11467-0_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019227810
    166 https://doi.org/10.1007/978-3-642-11467-0_7
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s10878-006-9036-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053253130
    169 https://doi.org/10.1007/s10878-006-9036-2
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1038/nsb0197-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012411826
    172 https://doi.org/10.1038/nsb0197-10
    173 rdf:type schema:CreativeWork
    174 grid-institutes:grid.8158.4 schema:alternateName Department of Mathematics and Computer Science, University of Catania, Catania, Italy
    175 schema:name Department of Mathematics and Computer Science, University of Catania, Catania, Italy
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...