Transducer generated arrays of robotic nano-arms View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-06

AUTHORS

Egor Dolzhenko, Nataša Jonoska, Nadrian C. Seeman

ABSTRACT

We consider sets of two-dimensional arrays, called here transducer generated languages, obtained by iterative applications of transducers (finite state automata with output). Each transducer generates a set of blocks of symbols such that the bottom row of a block is an input string accepted by the transducer and, by iterative application of the transducer, each row of the block is an output of the transducer on the preceding row. We show how these arrays can be implemented through molecular assembly of triple crossover DNA molecules. Such assembly could serve as a scaffold for arranging molecular robotic arms capable for simultaneous movements. We observe that transducer generated languages define a class of languages which is a proper subclass of recognizable picture languages, but it containing the class of all factorial local two-dimensional languages. By taking the average growth rate of the number of blocks in the language as a measure of its complexity, we further observe that arrays with high complexity patterns can be generated in this way. More... »

PAGES

437-455

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11047-009-9157-5

DOI

http://dx.doi.org/10.1007/s11047-009-9157-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023709411

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24653669


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2004", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Linguistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Language, Communication and Culture", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of South Florida", 
          "id": "https://www.grid.ac/institutes/grid.170693.a", 
          "name": [
            "Department of Mathematics and Statistics, University of South Florida, 33620, Tampa, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dolzhenko", 
        "givenName": "Egor", 
        "id": "sg:person.0674355376.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674355376.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of South Florida", 
          "id": "https://www.grid.ac/institutes/grid.170693.a", 
          "name": [
            "Department of Mathematics and Statistics, University of South Florida, 33620, Tampa, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jonoska", 
        "givenName": "Nata\u0161a", 
        "id": "sg:person.016710314305.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710314305.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Chemistry Department, New York University, 10003, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seeman", 
        "givenName": "Nadrian C.", 
        "id": "sg:person.01155412761.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155412761.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-73208-2_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001300229", 
          "https://doi.org/10.1007/978-3-540-73208-2_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-73208-2_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001300229", 
          "https://doi.org/10.1007/978-3-540-73208-2_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76336-9_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001515315", 
          "https://doi.org/10.1007/978-3-540-76336-9_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76336-9_27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001515315", 
          "https://doi.org/10.1007/978-3-540-76336-9_27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-59126-6_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001827630", 
          "https://doi.org/10.1007/978-3-642-59126-6_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-59126-6_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001827630", 
          "https://doi.org/10.1007/978-3-642-59126-6_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0020424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004978828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja993393e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010206052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja993393e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010206052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24635-0_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011571007", 
          "https://doi.org/10.1007/978-3-540-24635-0_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-24635-0_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011571007", 
          "https://doi.org/10.1007/978-3-540-24635-0_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76336-9_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012810261", 
          "https://doi.org/10.1007/978-3-540-76336-9_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76336-9_26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012810261", 
          "https://doi.org/10.1007/978-3-540-76336-9_26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(95)00120-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014331006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/28998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015431161", 
          "https://doi.org/10.1038/28998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/28998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015431161", 
          "https://doi.org/10.1038/28998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1131372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018529985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-27812-2_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021148329", 
          "https://doi.org/10.1007/978-3-540-27812-2_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-27812-2_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021148329", 
          "https://doi.org/10.1007/978-3-540-27812-2_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-44693-1_35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024160249", 
          "https://doi.org/10.1007/3-540-44693-1_35"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700005290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029676484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0143385700005290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029676484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07391102.2000.10506630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035285065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0055778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037191031", 
          "https://doi.org/10.1007/bfb0055778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415062a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038458584", 
          "https://doi.org/10.1038/415062a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415062a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038458584", 
          "https://doi.org/10.1038/415062a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0303-2647(99)00031-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041870792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl060994c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041955989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl060994c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041955989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-95891-8_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044421381", 
          "https://doi.org/10.1007/978-3-540-95891-8_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-95891-8_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044421381", 
          "https://doi.org/10.1007/978-3-540-95891-8_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048486242", 
          "https://doi.org/10.1038/35035038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048486242", 
          "https://doi.org/10.1038/35035038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-70844-5_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052729457", 
          "https://doi.org/10.1007/978-3-540-70844-5_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00064a003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055159372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja038381e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055834682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja038381e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055834682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0628605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0628605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/ita:2006008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056972238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1104299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129054106003917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062896684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812797872_0003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088704522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/135/1185094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089207128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511626302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098666812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/coll/036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098741930"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-06", 
    "datePublishedReg": "2010-06-01", 
    "description": "We consider sets of two-dimensional arrays, called here transducer generated languages, obtained by iterative applications of transducers (finite state automata with output). Each transducer generates a set of blocks of symbols such that the bottom row of a block is an input string accepted by the transducer and, by iterative application of the transducer, each row of the block is an output of the transducer on the preceding row. We show how these arrays can be implemented through molecular assembly of triple crossover DNA molecules. Such assembly could serve as a scaffold for arranging molecular robotic arms capable for simultaneous movements. We observe that transducer generated languages define a class of languages which is a proper subclass of recognizable picture languages, but it containing the class of all factorial local two-dimensional languages. By taking the average growth rate of the number of blocks in the language as a measure of its complexity, we further observe that arrays with high complexity patterns can be generated in this way.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11047-009-9157-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3027857", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3060558", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3081437", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3060500", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3051927", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2509838", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2635128", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3012907", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3053138", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2994501", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1033918", 
        "issn": [
          "1567-7818", 
          "1572-9796"
        ], 
        "name": "Natural Computing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Transducer generated arrays of robotic nano-arms", 
    "pagination": "437-455", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "70f53735aea365fc53698b4d7d5ce334292763d7a97a0b86696be490ff16a2e3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24653669"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101220059"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11047-009-9157-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023709411"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11047-009-9157-5", 
      "https://app.dimensions.ai/details/publication/pub.1023709411"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99839_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11047-009-9157-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11047-009-9157-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11047-009-9157-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11047-009-9157-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11047-009-9157-5'


 

This table displays all metadata directly associated to this object as RDF triples.

212 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11047-009-9157-5 schema:about anzsrc-for:20
2 anzsrc-for:2004
3 schema:author N88af0831eff04d94b2688a4813f58739
4 schema:citation sg:pub.10.1007/3-540-44693-1_35
5 sg:pub.10.1007/978-3-540-24635-0_16
6 sg:pub.10.1007/978-3-540-27812-2_13
7 sg:pub.10.1007/978-3-540-70844-5_19
8 sg:pub.10.1007/978-3-540-73208-2_7
9 sg:pub.10.1007/978-3-540-76336-9_26
10 sg:pub.10.1007/978-3-540-76336-9_27
11 sg:pub.10.1007/978-3-540-95891-8_11
12 sg:pub.10.1007/978-3-642-59126-6_4
13 sg:pub.10.1007/bfb0055778
14 sg:pub.10.1038/28998
15 sg:pub.10.1038/35035038
16 sg:pub.10.1038/415062a
17 https://doi.org/10.1016/0012-365x(95)00120-l
18 https://doi.org/10.1016/s0303-2647(99)00031-3
19 https://doi.org/10.1017/cbo9780511626302
20 https://doi.org/10.1017/s0143385700005290
21 https://doi.org/10.1021/bi00064a003
22 https://doi.org/10.1021/ja038381e
23 https://doi.org/10.1021/ja993393e
24 https://doi.org/10.1021/nl060994c
25 https://doi.org/10.1021/nl0628605
26 https://doi.org/10.1051/ita:2006008
27 https://doi.org/10.1080/07391102.2000.10506630
28 https://doi.org/10.1090/coll/036
29 https://doi.org/10.1090/conm/135/1185094
30 https://doi.org/10.1126/science.1104299
31 https://doi.org/10.1126/science.1131372
32 https://doi.org/10.1142/9789812797872_0003
33 https://doi.org/10.1142/s0129054106003917
34 https://doi.org/10.1371/journal.pbio.0020424
35 schema:datePublished 2010-06
36 schema:datePublishedReg 2010-06-01
37 schema:description We consider sets of two-dimensional arrays, called here transducer generated languages, obtained by iterative applications of transducers (finite state automata with output). Each transducer generates a set of blocks of symbols such that the bottom row of a block is an input string accepted by the transducer and, by iterative application of the transducer, each row of the block is an output of the transducer on the preceding row. We show how these arrays can be implemented through molecular assembly of triple crossover DNA molecules. Such assembly could serve as a scaffold for arranging molecular robotic arms capable for simultaneous movements. We observe that transducer generated languages define a class of languages which is a proper subclass of recognizable picture languages, but it containing the class of all factorial local two-dimensional languages. By taking the average growth rate of the number of blocks in the language as a measure of its complexity, we further observe that arrays with high complexity patterns can be generated in this way.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf Nf58512ff4843423e8c007ac367872eee
42 Nf6d726bed81542c38790014d60ace04f
43 sg:journal.1033918
44 schema:name Transducer generated arrays of robotic nano-arms
45 schema:pagination 437-455
46 schema:productId N11163936a5864d10916953d121335177
47 N2d0c36d5608f45f8ba0061f1e58566de
48 Na88cafc85a41483d97974d5baf995b31
49 Ne017190136b04f20a79af810100f8bc1
50 Nf07e1ab162a84abd85620095dab7e1c3
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023709411
52 https://doi.org/10.1007/s11047-009-9157-5
53 schema:sdDatePublished 2019-04-11T09:40
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N0705064a650a48e0bc8192584ab41a93
56 schema:url http://link.springer.com/10.1007%2Fs11047-009-9157-5
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0705064a650a48e0bc8192584ab41a93 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N11163936a5864d10916953d121335177 schema:name pubmed_id
63 schema:value 24653669
64 rdf:type schema:PropertyValue
65 N2d0c36d5608f45f8ba0061f1e58566de schema:name doi
66 schema:value 10.1007/s11047-009-9157-5
67 rdf:type schema:PropertyValue
68 N2f63462d07ee4406a58164fbe04d8a61 rdf:first sg:person.016710314305.62
69 rdf:rest Nae7e3f064a4a41ae828a5c10c730a0ff
70 N88af0831eff04d94b2688a4813f58739 rdf:first sg:person.0674355376.46
71 rdf:rest N2f63462d07ee4406a58164fbe04d8a61
72 Na88cafc85a41483d97974d5baf995b31 schema:name readcube_id
73 schema:value 70f53735aea365fc53698b4d7d5ce334292763d7a97a0b86696be490ff16a2e3
74 rdf:type schema:PropertyValue
75 Nae7e3f064a4a41ae828a5c10c730a0ff rdf:first sg:person.01155412761.86
76 rdf:rest rdf:nil
77 Ne017190136b04f20a79af810100f8bc1 schema:name dimensions_id
78 schema:value pub.1023709411
79 rdf:type schema:PropertyValue
80 Nf07e1ab162a84abd85620095dab7e1c3 schema:name nlm_unique_id
81 schema:value 101220059
82 rdf:type schema:PropertyValue
83 Nf58512ff4843423e8c007ac367872eee schema:issueNumber 2
84 rdf:type schema:PublicationIssue
85 Nf6d726bed81542c38790014d60ace04f schema:volumeNumber 9
86 rdf:type schema:PublicationVolume
87 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
88 schema:name Language, Communication and Culture
89 rdf:type schema:DefinedTerm
90 anzsrc-for:2004 schema:inDefinedTermSet anzsrc-for:
91 schema:name Linguistics
92 rdf:type schema:DefinedTerm
93 sg:grant.2509838 http://pending.schema.org/fundedItem sg:pub.10.1007/s11047-009-9157-5
94 rdf:type schema:MonetaryGrant
95 sg:grant.2635128 http://pending.schema.org/fundedItem sg:pub.10.1007/s11047-009-9157-5
96 rdf:type schema:MonetaryGrant
97 sg:grant.2994501 http://pending.schema.org/fundedItem sg:pub.10.1007/s11047-009-9157-5
98 rdf:type schema:MonetaryGrant
99 sg:grant.3012907 http://pending.schema.org/fundedItem sg:pub.10.1007/s11047-009-9157-5
100 rdf:type schema:MonetaryGrant
101 sg:grant.3027857 http://pending.schema.org/fundedItem sg:pub.10.1007/s11047-009-9157-5
102 rdf:type schema:MonetaryGrant
103 sg:grant.3051927 http://pending.schema.org/fundedItem sg:pub.10.1007/s11047-009-9157-5
104 rdf:type schema:MonetaryGrant
105 sg:grant.3053138 http://pending.schema.org/fundedItem sg:pub.10.1007/s11047-009-9157-5
106 rdf:type schema:MonetaryGrant
107 sg:grant.3060500 http://pending.schema.org/fundedItem sg:pub.10.1007/s11047-009-9157-5
108 rdf:type schema:MonetaryGrant
109 sg:grant.3060558 http://pending.schema.org/fundedItem sg:pub.10.1007/s11047-009-9157-5
110 rdf:type schema:MonetaryGrant
111 sg:grant.3081437 http://pending.schema.org/fundedItem sg:pub.10.1007/s11047-009-9157-5
112 rdf:type schema:MonetaryGrant
113 sg:journal.1033918 schema:issn 1567-7818
114 1572-9796
115 schema:name Natural Computing
116 rdf:type schema:Periodical
117 sg:person.01155412761.86 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
118 schema:familyName Seeman
119 schema:givenName Nadrian C.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155412761.86
121 rdf:type schema:Person
122 sg:person.016710314305.62 schema:affiliation https://www.grid.ac/institutes/grid.170693.a
123 schema:familyName Jonoska
124 schema:givenName Nataša
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710314305.62
126 rdf:type schema:Person
127 sg:person.0674355376.46 schema:affiliation https://www.grid.ac/institutes/grid.170693.a
128 schema:familyName Dolzhenko
129 schema:givenName Egor
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674355376.46
131 rdf:type schema:Person
132 sg:pub.10.1007/3-540-44693-1_35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024160249
133 https://doi.org/10.1007/3-540-44693-1_35
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/978-3-540-24635-0_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011571007
136 https://doi.org/10.1007/978-3-540-24635-0_16
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-540-27812-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021148329
139 https://doi.org/10.1007/978-3-540-27812-2_13
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-540-70844-5_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052729457
142 https://doi.org/10.1007/978-3-540-70844-5_19
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-540-73208-2_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001300229
145 https://doi.org/10.1007/978-3-540-73208-2_7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-3-540-76336-9_26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012810261
148 https://doi.org/10.1007/978-3-540-76336-9_26
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/978-3-540-76336-9_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001515315
151 https://doi.org/10.1007/978-3-540-76336-9_27
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/978-3-540-95891-8_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044421381
154 https://doi.org/10.1007/978-3-540-95891-8_11
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/978-3-642-59126-6_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001827630
157 https://doi.org/10.1007/978-3-642-59126-6_4
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/bfb0055778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037191031
160 https://doi.org/10.1007/bfb0055778
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/28998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015431161
163 https://doi.org/10.1038/28998
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/35035038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048486242
166 https://doi.org/10.1038/35035038
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/415062a schema:sameAs https://app.dimensions.ai/details/publication/pub.1038458584
169 https://doi.org/10.1038/415062a
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/0012-365x(95)00120-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1014331006
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0303-2647(99)00031-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041870792
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1017/cbo9780511626302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666812
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1017/s0143385700005290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029676484
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1021/bi00064a003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055159372
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1021/ja038381e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055834682
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/ja993393e schema:sameAs https://app.dimensions.ai/details/publication/pub.1010206052
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/nl060994c schema:sameAs https://app.dimensions.ai/details/publication/pub.1041955989
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/nl0628605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217042
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1051/ita:2006008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056972238
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1080/07391102.2000.10506630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035285065
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1090/coll/036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741930
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1090/conm/135/1185094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089207128
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.1104299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451122
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1126/science.1131372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018529985
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1142/9789812797872_0003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088704522
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1142/s0129054106003917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062896684
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1371/journal.pbio.0020424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004978828
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
208 schema:name Chemistry Department, New York University, 10003, New York, NY, USA
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.170693.a schema:alternateName University of South Florida
211 schema:name Department of Mathematics and Statistics, University of South Florida, 33620, Tampa, FL, USA
212 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...